These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 25125280)

  • 1. Anatomical structure and ultrastructure of the endocarp cell walls of Argania spinosa (L.) Skeels (Sapotaceae).
    Sebaa HS; Harche MK
    Micron; 2014 Dec; 67():100-106. PubMed ID: 25125280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Investigation of Cell Wall Xylan Polysaccharides from the Leaves of Algerian Argania spinosa.
    Hachem K; Faugeron C; Kaid-Harche M; Gloaguen V
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27879638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell wall carbohydrates from fruit pulp of Argania spinosa: structural analysis of pectin and xyloglucan polysaccharides.
    Aboughe-Angone S; Nguema-Ona E; Ghosh P; Lerouge P; Ishii T; Ray B; Driouich A
    Carbohydr Res; 2008 Jan; 343(1):67-72. PubMed ID: 18005949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Composition of the essential oil of Argania spinosa (Sapotaceae) fruit pulp.
    Harhar H; Gharby S; Ghanmi M; El Monfalouti H; Guillaume D; Charrouf Z
    Nat Prod Commun; 2010 Jun; 5(6):935-6. PubMed ID: 20614829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino phenolics from the fruit of the argan tree Argania spinosa (Skeels L.).
    Klika D; Khallouki F; Owen RW
    Z Naturforsch C J Biosci; 2014; 69(9-10):363-7. PubMed ID: 25711036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical Composition and Anti-Urolithiatic Activity of Extracts from
    El Oumari FE; Bousta D; Imtara H; Lahrichi A; Elhabbani R; El Mouhri G; Al Kamaly O; Saleh A; Parvez MK; Grafov A; Sqalli Houssaini T
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anatomical structure of Camellia oleifera shell.
    Hu J; Shi Y; Liu Y; Chang S
    Protoplasma; 2018 Nov; 255(6):1777-1784. PubMed ID: 29868989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Helicoidal orientation of cellulose microfibrils in Nitella opaca internode cells: ultrastructure and computed theoretical effects of strain reorientation during wall growth.
    Neville AC; Levy S
    Planta; 1984 Oct; 162(4):370-84. PubMed ID: 24253172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The complete mitochondrial genome data of
    Idrissi Azami A; Pirro S; Sehli S; Habib N; El Ghoubali D; Al Idrissi N; Rahim B; Gaboun F; Msanda F; Zahidi A; El Finti A; Legssyer A; Tatusova T; Nejjari C; Amzazi S; Belyamani L; El Mousadik A; Ghazal H
    Data Brief; 2024 Dec; 57():110862. PubMed ID: 39290434
    [No Abstract]   [Full Text] [Related]  

  • 10. Isolation and characterization of xylans from seed pericarp of Argania spinosa fruit.
    Habibi Y; Vignon MR
    Carbohydr Res; 2005 May; 340(7):1431-6. PubMed ID: 15854618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of peroxidases in lignifying peach fruit endocarp.
    Abeles FB; Biles CL
    Plant Physiol; 1991 Jan; 95(1):269-73. PubMed ID: 16667963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy.
    Zhang T; Zheng Y; Cosgrove DJ
    Plant J; 2016 Jan; 85(2):179-92. PubMed ID: 26676644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural cell-wall proteins in protoxylem development: evidence for a repair process mediated by a glycine-rich protein.
    Ryser U; Schorderet M; Zhao GF; Studer D; Ruel K; Hauf G; Keller B
    Plant J; 1997 Jul; 12(1):97-111. PubMed ID: 9263454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Helicoidal pattern in secondary cell walls and possible role of xylans in their construction.
    Reis D; Vian B
    C R Biol; 2004; 327(9-10):785-90. PubMed ID: 15587069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endocarp Dehiscence in Pistachio (Pistacia vera L.).
    Polito VS; Pinney K
    Int J Plant Sci; 1999 Sep; 160(5):827-835. PubMed ID: 10506463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saponin inventory from Argania spinosa kernel cakes by liquid chromatography and mass spectrometry.
    Henry M; Kowalczyk M; Maldini M; Piacente S; Stochmal A; Oleszek W
    Phytochem Anal; 2013; 24(6):616-22. PubMed ID: 23780812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The morphology and internal structure of dogwood (
    Morozowska M; Woźnicka A; Nowińska R
    PeerJ; 2021; 9():e12170. PubMed ID: 34760345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical levels of organization of the Brazil nut mesocarp.
    Sonego M; Fleck C; Pessan LA
    Sci Rep; 2020 Apr; 10(1):6786. PubMed ID: 32321974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of Stone (Hardened Endocarp) Formation in Fruits: An Attempt toward Pitless Fruits, and Its Advantages and Disadvantages.
    Khan MKU; Muhammad N; Jia Z; Peng J; Liu M
    Genes (Basel); 2022 Nov; 13(11):. PubMed ID: 36421798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrolyzable tannins are incorporated into the endocarp during sclerification of the water caltrop Trapa natans.
    Huss JC; Antreich SJ; Felhofer M; Mayer K; Eder M; Vieira Dias Dos Santos AC; Ramer G; Lendl B; Gierlinger N
    Plant Physiol; 2023 Dec; 194(1):94-105. PubMed ID: 37427803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.