These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 25125452)
1. Frailty modeling for clustered competing risks data with missing cause of failure. Lee M; Ha ID; Lee Y Stat Methods Med Res; 2017 Feb; 26(1):356-373. PubMed ID: 25125452 [TBL] [Abstract][Full Text] [Related]
2. Direct likelihood inference and sensitivity analysis for competing risks regression with missing causes of failure. Moreno-Betancur M; Rey G; Latouche A Biometrics; 2015 Jun; 71(2):498-507. PubMed ID: 25761785 [TBL] [Abstract][Full Text] [Related]
3. Analysis of clustered competing risks data using subdistribution hazard models with multivariate frailties. Ha ID; Christian NJ; Jeong JH; Park J; Lee Y Stat Methods Med Res; 2016 Dec; 25(6):2488-2505. PubMed ID: 24619110 [TBL] [Abstract][Full Text] [Related]
4. Multiple imputation methods for estimating regression coefficients in the competing risks model with missing cause of failure. Lu K; Tsiatis AA Biometrics; 2001 Dec; 57(4):1191-7. PubMed ID: 11764260 [TBL] [Abstract][Full Text] [Related]
5. Hierarchical likelihood inference on clustered competing risks data. Christian NJ; Ha ID; Jeong JH Stat Med; 2016 Jan; 35(2):251-67. PubMed ID: 26278918 [TBL] [Abstract][Full Text] [Related]
6. Penalized variable selection for cause-specific hazard frailty models with clustered competing-risks data. Rakhmawati TW; Ha ID; Lee H; Lee Y Stat Med; 2021 Dec; 40(29):6541-6557. PubMed ID: 34541690 [TBL] [Abstract][Full Text] [Related]
7. The competing risks Cox model with auxiliary case covariates under weaker missing-at-random cause of failure. Nevo D; Nishihara R; Ogino S; Wang M Lifetime Data Anal; 2018 Jul; 24(3):425-442. PubMed ID: 28779227 [TBL] [Abstract][Full Text] [Related]
8. Vertical modelling: Analysis of competing risks data with missing causes of failure. Nicolaie MA; van Houwelingen HC; Putter H Stat Methods Med Res; 2015 Dec; 24(6):891-908. PubMed ID: 22179822 [TBL] [Abstract][Full Text] [Related]
9. Semiparametric marginal regression for clustered competing risks data with missing cause of failure. Zhou W; Bakoyannis G; Zhang Y; Yiannoutsos CT Biostatistics; 2023 Jul; 24(3):795-810. PubMed ID: 35411923 [TBL] [Abstract][Full Text] [Related]
10. Variable selection in subdistribution hazard frailty models with competing risks data. Ha ID; Lee M; Oh S; Jeong JH; Sylvester R; Lee Y Stat Med; 2014 Nov; 33(26):4590-604. PubMed ID: 25042872 [TBL] [Abstract][Full Text] [Related]
11. Semiparametric regression and risk prediction with competing risks data under missing cause of failure. Bakoyannis G; Zhang Y; Yiannoutsos CT Lifetime Data Anal; 2020 Oct; 26(4):659-684. PubMed ID: 31982977 [TBL] [Abstract][Full Text] [Related]
12. Multiple imputation methods for nonparametric inference on cumulative incidence with missing cause of failure. Lee M; Dignam JJ; Han J Stat Med; 2014 Nov; 33(26):4605-26. PubMed ID: 25043107 [TBL] [Abstract][Full Text] [Related]
13. Fitting a shared frailty illness-death model to left-truncated semi-competing risks data to examine the impact of education level on incident dementia. Lee C; Gilsanz P; Haneuse S BMC Med Res Methodol; 2021 Jan; 21(1):18. PubMed ID: 33430798 [TBL] [Abstract][Full Text] [Related]
14. Analysing multicentre competing risks data with a mixed proportional hazards model for the subdistribution. Katsahian S; Resche-Rigon M; Chevret S; Porcher R Stat Med; 2006 Dec; 25(24):4267-78. PubMed ID: 16960919 [TBL] [Abstract][Full Text] [Related]
15. Frailty proportional mean residual life regression for clustered survival data: A hierarchical quasi-likelihood method. Huang R; Xiang L; Ha ID Stat Med; 2019 Oct; 38(24):4854-4870. PubMed ID: 31418907 [TBL] [Abstract][Full Text] [Related]
16. Multiple frailty model for clustered interval-censored data with frailty selection. Pan C; Cai B; Wang L Stat Methods Med Res; 2017 Jun; 26(3):1308-1322. PubMed ID: 25794883 [TBL] [Abstract][Full Text] [Related]
17. Nonproportional hazards and unobserved heterogeneity in clustered survival data: When can we tell the difference? Balan TA; Putter H Stat Med; 2019 Aug; 38(18):3405-3420. PubMed ID: 31050028 [TBL] [Abstract][Full Text] [Related]
18. Missing covariates in competing risks analysis. Bartlett JW; Taylor JM Biostatistics; 2016 Oct; 17(4):751-63. PubMed ID: 27179002 [TBL] [Abstract][Full Text] [Related]
19. Missing cause of death information in the analysis of survival data. Andersen J; Goetghebeur E; Ryan L Stat Med; 1996 Oct; 15(20):2191-201. PubMed ID: 8910963 [TBL] [Abstract][Full Text] [Related]
20. Investigating hospital heterogeneity with a competing risks frailty model. Rueten-Budde AJ; Putter H; Fiocco M Stat Med; 2019 Jan; 38(2):269-288. PubMed ID: 30338563 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]