These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25126684)

  • 1. Effect of different signal-processing options on speech-in-noise recognition for cochlear implant recipients with the cochlear CP810 speech processor.
    Potts LG; Kolb KA
    J Am Acad Audiol; 2014 Apr; 25(4):367-79. PubMed ID: 25126684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of different signal processing options in unilateral and bilateral cochlear freedom implant recipients using R-Space background noise.
    Brockmeyer AM; Potts LG
    J Am Acad Audiol; 2011 Feb; 22(2):65-80. PubMed ID: 21463562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving speech perception in noise for children with cochlear implants.
    Gifford RH; Olund AP; DeJong M
    J Am Acad Audiol; 2011 Oct; 22(9):623-632. PubMed ID: 22192607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effects of Preprocessing Strategies for Pediatric Cochlear Implant Recipients.
    Rakszawski B; Wright R; Cadieux JH; Davidson LS; Brenner C
    J Am Acad Audiol; 2016 Feb; 27(2):85-102. PubMed ID: 26905529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benefits of Adaptive Signal Processing in a Commercially Available Cochlear Implant Sound Processor.
    Wolfe J; Neumann S; Marsh M; Schafer E; Lianos L; Gilden J; O'Neill L; Arkis P; Menapace C; Nel E; Jones M
    Otol Neurotol; 2015 Aug; 36(7):1181-90. PubMed ID: 26049314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Automatic Directional Processing with Cochlear Implant Recipients.
    Potts LG; Jang S; Hillis CL
    J Am Acad Audiol; 2021 Sep; 32(8):478-486. PubMed ID: 34965594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speech perception for adult cochlear implant recipients in a realistic background noise: effectiveness of preprocessing strategies and external options for improving speech recognition in noise.
    Gifford RH; Revit LJ
    J Am Acad Audiol; 2010; 21(7):441-51; quiz 487-8. PubMed ID: 20807480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of front-end processing on cochlear implant performance of children.
    Wolfe J; Schafer EC; John A; Hudson M
    Otol Neurotol; 2011 Jun; 32(4):533-8. PubMed ID: 21436756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speech Intelligibility in Various Noise Conditions with the Nucleus® 5 CP810 Sound Processor.
    Dillier N; Lai WK
    Audiol Res; 2015 Jun; 5(2):132. PubMed ID: 26779327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance benefits for adults using a cochlear implant with adaptive dynamic range optimization (ADRO): a comparative study.
    Müller-Deile J; Kiefer J; Wyss J; Nicolai J; Battmer R
    Cochlear Implants Int; 2008 Mar; 9(1):8-26. PubMed ID: 18300224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of directionality performances: comparison between Freedom and CP810 sound processors.
    Razza S; Albanese G; Ermoli L; Zaccone M; Cristofari E
    Otolaryngol Head Neck Surg; 2013 Oct; 149(4):608-13. PubMed ID: 23838307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of speech recognition in noise with cochlear implants and dynamic FM.
    Wolfe J; Schafer EC; Heldner B; Mülder H; Ward E; Vincent B
    J Am Acad Audiol; 2009; 20(7):409-21. PubMed ID: 19928395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cochlear implant microphone location affects speech recognition in diffuse noise.
    Kolberg ER; Sheffield SW; Davis TJ; Sunderhaus LW; Gifford RH
    J Am Acad Audiol; 2015 Jan; 26(1):51-8; quiz 109-10. PubMed ID: 25597460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of Autosensitivity Control (ASC) in Cochlear Implant Recipients.
    Di Berardino F; Zanetti D; Soi D; Costa LD; Burdo S
    Audiol Res; 2021 Jan; 11(1):22-30. PubMed ID: 33494464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining directional microphone and single-channel noise reduction algorithms: a clinical evaluation in difficult listening conditions with cochlear implant users.
    Hersbach AA; Arora K; Mauger SJ; Dawson PW
    Ear Hear; 2012; 33(4):e13-23. PubMed ID: 22555182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benefits of bilateral electrical stimulation with the nucleus cochlear implant in adults: 6-month postoperative results.
    Laszig R; Aschendorff A; Stecker M; Müller-Deile J; Maune S; Dillier N; Weber B; Hey M; Begall K; Lenarz T; Battmer RD; Böhm M; Steffens T; Strutz J; Linder T; Probst R; Allum J; Westhofen M; Doering W
    Otol Neurotol; 2004 Nov; 25(6):958-68. PubMed ID: 15547426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Microphone Configuration and Sound Source Location on Speech Recognition for Adult Cochlear Implant Users with Current-Generation Sound Processors.
    Dwyer RT; Roberts J; Gifford RH
    J Am Acad Audiol; 2020 Sep; 31(8):578-589. PubMed ID: 32340055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive dynamic range optimization for cochlear implants: a preliminary study.
    James CJ; Blamey PJ; Martin L; Swanson B; Just Y; Macfarlane D
    Ear Hear; 2002 Feb; 23(1 Suppl):49S-58S. PubMed ID: 11883767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Improving speech comprehension using a new cochlear implant speech processor].
    Müller-Deile J; Kortmann T; Hoppe U; Hessel H; Morsnowski A
    HNO; 2009 Jun; 57(6):567-74. PubMed ID: 18685820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Threshold Adjustment on Speech Perception in Nucleus Cochlear Implant Recipients.
    Busby PA; Arora K
    Ear Hear; 2016; 37(3):303-11. PubMed ID: 26671316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.