These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Regulation and function of the two-pore-domain (K2P) potassium channel Trek-1 in alveolar epithelial cells. Schwingshackl A; Teng B; Ghosh M; West AN; Makena P; Gorantla V; Sinclair SE; Waters CM Am J Physiol Lung Cell Mol Physiol; 2012 Jan; 302(1):L93-L102. PubMed ID: 21949155 [TBL] [Abstract][Full Text] [Related]
4. Hyperoxia treatment of TREK-1/TREK-2/TRAAK-deficient mice is associated with a reduction in surfactant proteins. Schwingshackl A; Lopez B; Teng B; Luellen C; Lesage F; Belperio J; Olcese R; Waters CM Am J Physiol Lung Cell Mol Physiol; 2017 Dec; 313(6):L1030-L1046. PubMed ID: 28839101 [TBL] [Abstract][Full Text] [Related]
5. Tn (N-acetyl-d-galactosamine-O-serine/threonine) immunization protects against hyperoxia-induced lung injury in adult mice through inhibition of the nuclear factor kappa B activity. Chen CM; Hwang J; Chou HC; Shiah HS Int Immunopharmacol; 2018 Jun; 59():261-268. PubMed ID: 29669308 [TBL] [Abstract][Full Text] [Related]
6. Regulation of interleukin-6 secretion by the two-pore-domain potassium channel Trek-1 in alveolar epithelial cells. Schwingshackl A; Teng B; Ghosh M; Lim KG; Tigyi G; Narayanan D; Jaggar JH; Waters CM Am J Physiol Lung Cell Mol Physiol; 2013 Feb; 304(4):L276-86. PubMed ID: 23275623 [TBL] [Abstract][Full Text] [Related]
7. TREK-1 Regulates Cytokine Secretion from Cultured Human Alveolar Epithelial Cells Independently of Cytoskeletal Rearrangements. Schwingshackl A; Roan E; Teng B; Waters CM PLoS One; 2015; 10(5):e0126781. PubMed ID: 26001192 [TBL] [Abstract][Full Text] [Related]
8. [The role of disequilibrium of expression of matrix metalloproteinase-2/9 and their tissue inhibitors in pathogenesis of hyperoxia-induced acute lung injury in mice]. Zhang XF; Zhu GF; Liu S; Foda HD Zhongguo Wei Zhong Bing Ji Jiu Yi Xue; 2008 Oct; 20(10):597-600. PubMed ID: 18926070 [TBL] [Abstract][Full Text] [Related]
9. Exogenous interleukin-10 attenuates hyperoxia-induced acute lung injury in mice. Li HD; Zhang QX; Mao Z; Xu XJ; Li NY; Zhang H Exp Physiol; 2015 Mar; 100(3):331-40. PubMed ID: 25480159 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of extracellular HMGB1 attenuates hyperoxia-induced inflammatory acute lung injury. Entezari M; Javdan M; Antoine DJ; Morrow DM; Sitapara RA; Patel V; Wang M; Sharma L; Gorasiya S; Zur M; Wu W; Li J; Yang H; Ashby CR; Thomas D; Wang H; Mantell LL Redox Biol; 2014; 2():314-22. PubMed ID: 24563849 [TBL] [Abstract][Full Text] [Related]
11. Carbon monoxide prevents ventilator-induced lung injury via caveolin-1. Hoetzel A; Schmidt R; Vallbracht S; Goebel U; Dolinay T; Kim HP; Ifedigbo E; Ryter SW; Choi AM Crit Care Med; 2009 May; 37(5):1708-15. PubMed ID: 19325477 [TBL] [Abstract][Full Text] [Related]
12. Cathepsin S deficiency confers protection from neonatal hyperoxia-induced lung injury. Hirakawa H; Pierce RA; Bingol-Karakoc G; Karaaslan C; Weng M; Shi GP; Saad A; Weber E; Mariani TJ; Starcher B; Shapiro SD; Cataltepe S Am J Respir Crit Care Med; 2007 Oct; 176(8):778-85. PubMed ID: 17673697 [TBL] [Abstract][Full Text] [Related]
13. Abca3 haploinsufficiency is a risk factor for lung injury induced by hyperoxia or mechanical ventilation in a murine model. Herber-Jonat S; Mittal R; Huppmann M; Hammel M; Liebisch G; Yildirim AÖ; Eickelberg O; Schmitz G; Hrabé de Angelis M; Flemmer AW; Holzinger A Pediatr Res; 2013 Oct; 74(4):384-92. PubMed ID: 23881110 [TBL] [Abstract][Full Text] [Related]
14. Urokinase plasminogen activator receptor-deficient mice demonstrate reduced hyperoxia-induced lung injury. van Zoelen MA; Florquin S; de Beer R; Pater JM; Verstege MI; Meijers JC; van der Poll T Am J Pathol; 2009 Jun; 174(6):2182-9. PubMed ID: 19435793 [TBL] [Abstract][Full Text] [Related]
17. Kinin B1 Receptor Antagonist BI113823 Reduces Acute Lung Injury. Nasseri S; Gurusamy M; Jung B; Lee D; Khang G; Doods H; Wu D Crit Care Med; 2015 Nov; 43(11):e499-507. PubMed ID: 26468713 [TBL] [Abstract][Full Text] [Related]
18. Augmented lung injury due to interaction between hyperoxia and mechanical ventilation. Sinclair SE; Altemeier WA; Matute-Bello G; Chi EY Crit Care Med; 2004 Dec; 32(12):2496-501. PubMed ID: 15599157 [TBL] [Abstract][Full Text] [Related]
19. Effects of long term normobaric hyperoxia exposure on lipopolysaccharide-induced lung injury. Ha JH; Kim SW; Kim IK; Yeo CD; Kang HH; Lee SH Exp Lung Res; 2020; 46(1-2):44-52. PubMed ID: 32067505 [No Abstract] [Full Text] [Related]
20. Effects of cyclic opening and closing at low- and high-volume ventilation on bronchoalveolar lavage cytokines. Chu EK; Whitehead T; Slutsky AS Crit Care Med; 2004 Jan; 32(1):168-74. PubMed ID: 14707576 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]