These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 25126887)

  • 1. Growth kinetics and growth mechanism of ultrahigh mass density carbon nanotube forests on conductive Ti/Cu supports.
    Sugime H; Esconjauregui S; D'Arsié L; Yang J; Makaryan T; Robertson J
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15440-7. PubMed ID: 25126887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-Temperature Growth of Carbon Nanotube Forests Consisting of Tubes with Narrow Inner Spacing Using Co/Al/Mo Catalyst on Conductive Supports.
    Sugime H; Esconjauregui S; D'Arsié L; Yang J; Robertson AW; Oliver RA; Bhardwaj S; Cepek C; Robertson J
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16819-27. PubMed ID: 26176167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth of ultrahigh density vertically aligned carbon nanotube forests for interconnects.
    Esconjauregui S; Fouquet M; Bayer BC; Ducati C; Smajda R; Hofmann S; Robertson J
    ACS Nano; 2010 Dec; 4(12):7431-6. PubMed ID: 21128669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diameter and density control of single-walled carbon nanotube forests by modulating Ostwald ripening through decoupling the catalyst formation and growth processes.
    Sakurai S; Inaguma M; Futaba DN; Yumura M; Hata K
    Small; 2013 Nov; 9(21):3584-92. PubMed ID: 23625816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoupled control of carbon nanotube forest density and diameter by continuous-feed convective assembly of catalyst particles.
    Polsen ES; Bedewy M; Hart AJ
    Small; 2013 Aug; 9(15):2564-75. PubMed ID: 23418098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gd-Enhanced Growth of Multi-Millimeter-Tall Forests of Single-Wall Carbon Nanotubes.
    Sugime H; Sato T; Nakagawa R; Cepek C; Noda S
    ACS Nano; 2019 Nov; 13(11):13208-13216. PubMed ID: 31674760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalyst design for carbon nanotube growth using atomistic modeling.
    Pint CL; Bozzolo G; Hauge R
    Nanotechnology; 2008 Oct; 19(40):405704. PubMed ID: 21832633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of morphology on the micro-compression response of carbon nanotube forests.
    Abadi PP; Hutchens SB; Greer JR; Cola BA; Graham S
    Nanoscale; 2012 Jun; 4(11):3373-80. PubMed ID: 22543679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion- and reaction-limited growth of carbon nanotube forests.
    Wirth CT; Zhang C; Zhong G; Hofmann S; Robertson J
    ACS Nano; 2009 Nov; 3(11):3560-6. PubMed ID: 19877596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of ultrahigh density single-walled carbon nanotube forests by improved catalyst design.
    Zhong G; Warner JH; Fouquet M; Robertson AW; Chen B; Robertson J
    ACS Nano; 2012 Apr; 6(4):2893-903. PubMed ID: 22439978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical coupling limits the density and quality of self-organized carbon nanotube growth.
    Bedewy M; Hart AJ
    Nanoscale; 2013 Apr; 5(7):2928-37. PubMed ID: 23455411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct observation of morphological evolution of a catalyst during carbon nanotube forest growth: new insights into growth and growth termination.
    Jeong S; Lee J; Kim HC; Hwang JY; Ku BC; Zakharov DN; Maruyama B; Stach EA; Kim SM
    Nanoscale; 2016 Jan; 8(4):2055-62. PubMed ID: 26700058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Transfer Doping of Carbon Nanotube Forests by MoO3.
    Esconjauregui S; D'Arsié L; Guo Y; Yang J; Sugime H; Caneva S; Cepek C; Robertson J
    ACS Nano; 2015 Oct; 9(10):10422-30. PubMed ID: 26375167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of Thermally Stable, High-Areal-Density, and Small-Diameter Catalyst Nanoparticles via Intermittent Sputtering Deposition for the High-Density Growth of Carbon Nanotubes.
    Koji H; Kusumoto Y; Hatta A; Furuta H
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering vertically aligned carbon nanotube growth by decoupled thermal treatment of precursor and catalyst.
    Meshot ER; Plata DL; Tawfick S; Zhang Y; Verploegen EA; Hart AJ
    ACS Nano; 2009 Sep; 3(9):2477-86. PubMed ID: 19691287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-temperature catalyst activator: mechanism of dense carbon nanotube forest growth studied using synchrotron radiation.
    Takashima A; Izumi Y; Ikenaga E; Ohkochi T; Kotsugi M; Matsushita T; Muro T; Kawabata A; Murakami T; Nihei M; Yokoyama N
    IUCrJ; 2014 Jul; 1(Pt 4):221-7. PubMed ID: 25075343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient coupling of optical energy for rapid catalyzed nanomaterial growth: high-quality carbon nanotube synthesis at low substrate temperatures.
    Ahmad M; Anguita JV; Stolojan V; Carey JD; Silva SR
    ACS Appl Mater Interfaces; 2013 May; 5(9):3861-6. PubMed ID: 23586644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abrasion as a catalyst deposition technique for carbon nanotube growth.
    Alvarez NT; Pint CL; Hauge RH; Tour JM
    J Am Chem Soc; 2009 Oct; 131(41):15041-8. PubMed ID: 19764728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and Mechanics of Heterogeneous, 3D Carbon Nanotube Forest Microstructures Formed by Sequential Selective-Area Synthesis.
    Hines R; Hajilounezhad T; Love-Baker C; Koerner G; Maschmann MR
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17893-17900. PubMed ID: 32208632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct termination morphologies for vertically aligned carbon nanotube forests.
    Vinten P; Marshall P; Lefebvre J; Finnie P
    Nanotechnology; 2010 Jan; 21(3):035603. PubMed ID: 19966390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.