These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 25126935)

  • 1. Unifying the low-temperature photoluminescence spectra of carbon nanotubes: the role of acoustic phonon confinement.
    Vialla F; Chassagneux Y; Ferreira R; Roquelet C; Diederichs C; Cassabois G; Roussignol P; Lauret JS; Voisin C
    Phys Rev Lett; 2014 Aug; 113(5):057402. PubMed ID: 25126935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong Acoustic Phonon Localization in Copolymer-Wrapped Carbon Nanotubes.
    Sarpkaya I; Ahmadi ED; Shepard GD; Mistry KS; Blackburn JL; Strauf S
    ACS Nano; 2015 Jun; 9(6):6383-93. PubMed ID: 26039893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct experimental evidence of exciton-phonon bound states in carbon nanotubes.
    Plentz F; Ribeiro HB; Jorio A; Strano MS; Pimenta MA
    Phys Rev Lett; 2005 Dec; 95(24):247401. PubMed ID: 16384421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single carbon nanotubes probed by photoluminescence excitation spectroscopy: the role of phonon-assisted transitions.
    Htoon H; O'Connell MJ; Doorn SK; Klimov VI
    Phys Rev Lett; 2005 Apr; 94(12):127403. PubMed ID: 15903961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low temperature emission spectra of individual single-walled carbon nanotubes: multiplicity of subspecies within single-species nanotube ensembles.
    Htoon H; O'Connell MJ; Cox PJ; Doorn SK; Klimov VI
    Phys Rev Lett; 2004 Jul; 93(2):027401. PubMed ID: 15323949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarons Explain Luminescence Behavior of Colloidal Quantum Dots at Low Temperature.
    Khosla M; Rao S; Gupta S
    Sci Rep; 2018 May; 8(1):8385. PubMed ID: 29849075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theory of Photoluminescence Spectral Line Shapes of Semiconductor Nanocrystals.
    Lin K; Jasrasaria D; Yoo JJ; Bawendi M; Utzat H; Rabani E
    J Phys Chem Lett; 2023 Aug; 14(32):7241-7248. PubMed ID: 37552653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure evolution of LiBaF(3):Eu(2+) luminescence.
    Mahlik S; Grinberg M; Shi L; Seo HJ
    J Phys Condens Matter; 2009 Jun; 21(23):235603. PubMed ID: 21825590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature dependence of the optical transition energies of carbon nanotubes: the role of electron-phonon coupling and thermal expansion.
    Cronin SB; Yin Y; Walsh A; Capaz RB; Stolyarov A; Tangney P; Cohen ML; Louie SG; Swan AK; Unlü MS; Goldberg BB; Tinkham M
    Phys Rev Lett; 2006 Mar; 96(12):127403. PubMed ID: 16605957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phonon-assisted excitonic recombination channels observed in DNA-wrapped carbon nanotubes using photoluminescence spectroscopy.
    Chou SG; Plentz F; Jiang J; Saito R; Nezich D; Ribeiro HB; Jorio A; Pimenta MA; Samsonidze GG; Santos AP; Zheng M; Onoa GB; Semke ED; Dresselhaus G; Dresselhaus MS
    Phys Rev Lett; 2005 Apr; 94(12):127402. PubMed ID: 15903960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of exciton dimensionality on spectral diffusion of single-walled carbon nanotubes.
    Ma X; Roslyak O; Wang F; Duque JG; Piryatinski A; Doorn SK; Htoon H
    ACS Nano; 2014 Oct; 8(10):10613-20. PubMed ID: 25251324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of bright and dark excitons in the temperature-dependent photoluminescence of carbon nanotubes.
    Mortimer IB; Nicholas RJ
    Phys Rev Lett; 2007 Jan; 98(2):027404. PubMed ID: 17358649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoluminescence properties of highly dispersed ZnO quantum dots in polyvinylpyrrolidone nanotubes prepared by a single capillary electrospinning.
    Li XH; Shao CL; Liu YC; Chu XY; Wang CH; Zhang BX
    J Chem Phys; 2008 Sep; 129(11):114708. PubMed ID: 19044981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low temperature photoluminescence properties of CsPbBr
    Ai B; Liu C; Deng Z; Wang J; Han J; Zhao X
    Phys Chem Chem Phys; 2017 Jul; 19(26):17349-17355. PubMed ID: 28650051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic and extrinsic effects in the temperature-dependent photoluminescence of semiconducting carbon nanotubes.
    Karaiskaj D; Engtrakul C; McDonald T; Heben MJ; Mascarenhas A
    Phys Rev Lett; 2006 Mar; 96(10):106805. PubMed ID: 16605775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of the full exciton and phonon fine structure in CdSe/CdS dot-in-rod heteronanocrystals.
    Granados Del Águila A; Jha B; Pietra F; Groeneveld E; de Mello Donegá C; Maan JC; Vanmaekelbergh D; Christianen PC
    ACS Nano; 2014 Jun; 8(6):5921-31. PubMed ID: 24861569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct observation of deep excitonic states in the photoluminescence spectra of single-walled carbon nanotubes.
    Kiowski O; Arnold K; Lebedkin S; Hennrich F; Kappes MM
    Phys Rev Lett; 2007 Dec; 99(23):237402. PubMed ID: 18233410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature effect on the emission spectra of narrow band Mn
    Lesniewski T; Mahlik S; Grinberg M; Liu RS
    Phys Chem Chem Phys; 2017 Dec; 19(48):32505-32513. PubMed ID: 29188841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interplay of spectral diffusion and phonon-broadening in individual photo-emitters: the case of carbon nanotubes.
    Jeantet A; Chassagneux Y; Claude T; Lauret JS; Voisin C
    Nanoscale; 2018 Jan; 10(2):683-689. PubMed ID: 29242889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of exciton-phonon coupling in the calculated optical absorption of carbon nanotubes.
    Perebeinos V; Tersoff J; Avouris P
    Phys Rev Lett; 2005 Jan; 94(2):027402. PubMed ID: 15698227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.