These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 25127436)

  • 1. Little adjustments significantly improve the Turkevich synthesis of gold nanoparticles.
    Schulz F; Homolka T; Bastús NG; Puntes V; Weller H; Vossmeyer T
    Langmuir; 2014 Sep; 30(35):10779-84. PubMed ID: 25127436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly controlled synthesis of nanometric gold particles by citrate reduction using the short mixing, heating and quenching times achievable in a microfluidic device.
    Ftouni J; Penhoat M; Addad A; Payen E; Rolando C; Girardon JS
    Nanoscale; 2012 Aug; 4(15):4450-4. PubMed ID: 22722332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monodisperse sub-10 nm gold nanoparticles by reversing the order of addition in Turkevich method--the role of chloroauric acid.
    Sivaraman SK; Kumar S; Santhanam V
    J Colloid Interface Sci; 2011 Sep; 361(2):543-7. PubMed ID: 21719021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of latent heat in boiling water on the synthesis of gold nanoparticles of different sizes by using the Turkevich method.
    Ding W; Zhang P; Li Y; Xia H; Wang D; Tao X
    Chemphyschem; 2015 Feb; 16(2):447-54. PubMed ID: 25393528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixed charged zwitterionic self-assembled monolayers as a facile way to stabilize large gold nanoparticles.
    Liu X; Huang H; Jin Q; Ji J
    Langmuir; 2011 May; 27(9):5242-51. PubMed ID: 21476529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct synthesis of large water-soluble functionalized gold nanoparticles using Bunte salts as ligand precursors.
    Lohse SE; Dahl JA; Hutchison JE
    Langmuir; 2010 May; 26(10):7504-11. PubMed ID: 20180591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllable synthesis of water-soluble gold nanoparticles and their applications in electrocatalysis and surface-enhanced Raman scattering.
    Qiao Y; Chen H; Lin Y; Huang J
    Langmuir; 2011 Sep; 27(17):11090-7. PubMed ID: 21761928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of stainless steel assisted bare gold nanoparticles and their analytical potential.
    López-Lorente AI; Simonet BM; Valcárcel M; Eppler S; Schindl R; Kranz C; Mizaikoff B
    Talanta; 2014 Jan; 118():321-7. PubMed ID: 24274303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding of the size control of biocompatible gold nanoparticles in millifluidic channels.
    Jun H; Fabienne T; Florent M; Coulon PE; Nicolas M; Olivier S
    Langmuir; 2012 Nov; 28(45):15966-74. PubMed ID: 23116539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of Precision Gold Nanoparticles Using Turkevich Method.
    Dong J; Carpinone PL; Pyrgiotakis G; Demokritou P; Moudgil BM
    Kona; 2020 Jan; 37():224-232. PubMed ID: 32153313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible assembly and disassembly of gold nanoparticles directed by a zwitterionic polymer.
    Ding Y; Xia XH; Zhai HS
    Chemistry; 2007; 13(15):4197-202. PubMed ID: 17236228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colorimetric detection of melamine in milk by citrate-stabilized gold nanoparticles.
    Kumar N; Seth R; Kumar H
    Anal Biochem; 2014 Jul; 456():43-9. PubMed ID: 24727351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gelatin-templated gold nanoparticles as novel time-temperature indicator.
    Lim S; Gunasekaran S; Imm JY
    J Food Sci; 2012 Sep; 77(9):N45-9. PubMed ID: 22900571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localized surface plasmon resonance of gold nanoparticles as colorimetric probes for determination of Isoniazid in pharmacological formulation.
    Zargar B; Hatamie A
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Apr; 106():185-9. PubMed ID: 23380146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protocol for development of various plants leaves extract in single-pot synthesis of metal nanoparticles.
    Dubey SP; Dwivedi AD; Lahtinen M; Lee C; Kwon YN; Sillanpaa M
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 103():134-42. PubMed ID: 23257341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of gold nanoparticles on eggshell membrane and their biosensing application.
    Zheng B; Qian L; Yuan H; Xiao D; Yang X; Paau MC; Choi MM
    Talanta; 2010 Jun; 82(1):177-83. PubMed ID: 20685454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reverse microemulsion-mediated synthesis of silica-coated gold and silver nanoparticles.
    Han Y; Jiang J; Lee SS; Ying JY
    Langmuir; 2008 Jun; 24(11):5842-8. PubMed ID: 18465888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultimate size control of encapsulated gold nanoparticles.
    Li S; Burel L; Aquino C; Tuel A; Morfin F; Rousset JL; Farrusseng D
    Chem Commun (Camb); 2013 Oct; 49(76):8507-9. PubMed ID: 23942629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of monodisperse quasi-spherical gold nanoparticles in water via silver(I)-assisted citrate reduction.
    Xia H; Bai S; Hartmann J; Wang D
    Langmuir; 2010 Mar; 26(5):3585-9. PubMed ID: 19877698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic and microscopic investigation of gold nanoparticle formation: ligand and temperature effects on rate and particle size.
    Sardar R; Shumaker-Parry JS
    J Am Chem Soc; 2011 Jun; 133(21):8179-90. PubMed ID: 21548572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.