These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 2512757)
21. Neurofilament phosphorylation in peripheral nerve: changes with axonal length and growth state. Pestronk A; Watson DF; Yuan CM J Neurochem; 1990 Mar; 54(3):977-82. PubMed ID: 1689380 [TBL] [Abstract][Full Text] [Related]
22. Changes in neurofilament transport coincide temporally with alterations in the caliber of axons in regenerating motor fibers. Hoffman PN; Thompson GW; Griffin JW; Price DL J Cell Biol; 1985 Oct; 101(4):1332-40. PubMed ID: 2413041 [TBL] [Abstract][Full Text] [Related]
23. Qualitative and quantitative comparison of the distribution of phosphorylated and non-phosphorylated neurofilament epitopes within central and peripheral axons of adult hamster (Mesocricetus auratus). Sloan KE; Stevenson JA; Bigbee JW Cell Tissue Res; 1991 Feb; 263(2):265-70. PubMed ID: 1706645 [TBL] [Abstract][Full Text] [Related]
24. Multiple phosphorylated variants of the high molecular mass subunit of neurofilaments in axons of retinal cell neurons: characterization and evidence for their differential association with stationary and moving neurofilaments. Lewis SE; Nixon RA J Cell Biol; 1988 Dec; 107(6 Pt 2):2689-701. PubMed ID: 3144556 [TBL] [Abstract][Full Text] [Related]
25. Maturation of a large neurofilament protein (NF 150K) in rat postnatal development. Dahl D J Neurosci Res; 1987; 17(4):367-74. PubMed ID: 3625802 [TBL] [Abstract][Full Text] [Related]
26. Phosphorylated and non-phosphorylated neurofilament epitopes are co-distributed in the fish Mauthner axon. Alfei L; Onali A; Caronti B; Valente AM; Medolago Albani L; Pasqualini C; Denizot JP Cell Mol Biol (Noisy-le-grand); 1998 Jun; 44(4):605-14. PubMed ID: 9678896 [TBL] [Abstract][Full Text] [Related]
27. Expression of phosphorylated high molecular weight neurofilament protein (NF-H) and vimentin in human developing dorsal root ganglia and spinal cord. Lukás Z; Dráber P; Bucek J; Dráberová E; Viklický V; Dolezel S Histochemistry; 1993 Dec; 100(6):495-502. PubMed ID: 8163392 [TBL] [Abstract][Full Text] [Related]
28. Emergence of highly neurofilament-immunoreactive zipper-like axon segments at the transection site in scalpel-cordotomized adult rats. Nishio T; Kawaguchi S; Fujiwara H Neuroscience; 2008 Jul; 155(1):90-103. PubMed ID: 18571867 [TBL] [Abstract][Full Text] [Related]
29. Monoclonal antibodies differentiate neurofilament and glial filament proteins in the goldfish visual pathway: probes for monitoring neurite outgrowth from retinal explants. Jones PS; Tesser P; Borchert J; Schechter N J Neurosci; 1989 Feb; 9(2):454-65. PubMed ID: 2493077 [TBL] [Abstract][Full Text] [Related]
30. Axonal damage in the making: neurofilament phosphorylation, proton mobility and magnetisation transfer in multiple sclerosis normal appearing white matter. Petzold A; Tozer DJ; Schmierer K Exp Neurol; 2011 Dec; 232(2):234-9. PubMed ID: 21958956 [TBL] [Abstract][Full Text] [Related]
31. Phosphorylation of neurofilament proteins and localization of axonal swellings in motor neuron disease. Toyoshima I; Yamamoto A; Masamune O; Satake M J Neurol Sci; 1989 Feb; 89(2-3):269-77. PubMed ID: 2494303 [TBL] [Abstract][Full Text] [Related]
32. Axonal and nonneuronal cell responses to spinal cord injury in mice lacking glial fibrillary acidic protein. Wang X; Messing A; David S Exp Neurol; 1997 Dec; 148(2):568-76. PubMed ID: 9417833 [TBL] [Abstract][Full Text] [Related]
33. Expression of brain-specific hyaluronectin (BHN), a hyaluronate-binding protein, in dog postnatal development. Bignami A; Dahl D Exp Neurol; 1988 Jan; 99(1):107-17. PubMed ID: 2446903 [TBL] [Abstract][Full Text] [Related]
34. Axon growth failure following corpus callosum lesions precedes glial reaction in perinatal rats. Ajtai BM; Kálmán M Anat Embryol (Berl); 2000 Oct; 202(4):313-21. PubMed ID: 11000282 [TBL] [Abstract][Full Text] [Related]
35. Identities, antigenic determinants, and topographic distributions of neurofilament proteins in the nervous systems of adult frogs and tadpoles of Xenopus laevis. Szaro BG; Gainer H J Comp Neurol; 1988 Jul; 273(3):344-58. PubMed ID: 2463277 [TBL] [Abstract][Full Text] [Related]
36. Neurofilament proteins in fish: a study with monoclonal antibodies reacting with mammalian NF 150K and NF 200K. Dahl D; Crosby CJ; Bignami A J Comp Neurol; 1986 Aug; 250(3):399-402. PubMed ID: 2427556 [TBL] [Abstract][Full Text] [Related]
37. Abnormal ubiquitination of axons in normally myelinated white matter in multiple sclerosis brain. Giordana MT; Richiardi P; Trevisan E; Boghi A; Palmucci L Neuropathol Appl Neurobiol; 2002 Feb; 28(1):35-41. PubMed ID: 11849561 [TBL] [Abstract][Full Text] [Related]
38. Phosphorylation-dependent neurofilament epitopes are reduced at the node of Ranvier. Mata M; Kupina N; Fink DJ J Neurocytol; 1992 Mar; 21(3):199-210. PubMed ID: 1373184 [TBL] [Abstract][Full Text] [Related]
39. Phosphorylation-dependent epitopes on neurofilament proteins and neurofilament densities differ in axons in the corticospinal and primary sensory dorsal column tracts in the rat spinal cord. Szaro BG; Whitnall MH; Gainer H J Comp Neurol; 1990 Dec; 302(2):220-35. PubMed ID: 1705265 [TBL] [Abstract][Full Text] [Related]
40. Regulation of the expression and phosphorylation of microtubule-associated protein 1B during regeneration of adult dorsal root ganglion neurons. Ma D; Connors T; Nothias F; Fischer I Neuroscience; 2000; 99(1):157-70. PubMed ID: 10924960 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]