BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 25127602)

  • 1. Radical scavenging activity of antioxidants evaluated by means of electrogenerated HO radical.
    Oliveira R; Geraldo D; Bento F
    Talanta; 2014 Nov; 129():320-7. PubMed ID: 25127602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel hydroxyl radical scavenging antioxidant activity assay for water-soluble antioxidants using a modified CUPRAC method.
    Bektaşoğlu B; Esin Celik S; Ozyürek M; Güçlü K; Apak R
    Biochem Biophys Res Commun; 2006 Jul; 345(3):1194-200. PubMed ID: 16716257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of total oxidant scavenging capacity of antioxidants for peroxynitrite, peroxyl radicals, and hydroxyl radicals.
    Regoli F; Winston GW
    Toxicol Appl Pharmacol; 1999 Apr; 156(2):96-105. PubMed ID: 10198274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radical scavenging ability of gallic acid toward OH and OOH radicals. Reaction mechanism and rate constants from the density functional theory.
    Marino T; Galano A; Russo N
    J Phys Chem B; 2014 Sep; 118(35):10380-9. PubMed ID: 25119432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxyl radical scavenging assay of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method using catalase for hydrogen peroxide degradation.
    Ozyürek M; Bektaşoğlu B; Güçlü K; Apak R
    Anal Chim Acta; 2008 Jun; 616(2):196-206. PubMed ID: 18482604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of reference compounds in antioxidant activity assessment.
    Nenadis N; Lazaridou O; Tsimidou MZ
    J Agric Food Chem; 2007 Jul; 55(14):5452-60. PubMed ID: 17579432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenolic antioxidants-functionalized quaternized chitosan: synthesis and antioxidant properties.
    Ren J; Li Q; Dong F; Feng Y; Guo Z
    Int J Biol Macromol; 2013 Feb; 53():77-81. PubMed ID: 23164754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic study of Sasa veitchii extract as a radical scavenger and an antioxidant.
    Okada Y; Okajima H; Takeshita K; Kanamori M
    J Food Sci; 2012 Nov; 77(11):C1211-7. PubMed ID: 23057490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential inhibition of superoxide, hydroxyl and peroxyl radicals by nimesulide and its main metabolite 4-hydroxynimesulide.
    Maffei Facino R; Carini M; Aldini G; Saibene L; Morelli R
    Arzneimittelforschung; 1995 Oct; 45(10):1102-9. PubMed ID: 8595069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antioxidant multi-walled carbon nanotubes by free radical grafting of gallic acid: new materials for biomedical applications.
    Cirillo G; Hampel S; Klingeler R; Puoci F; Iemma F; Curcio M; Parisi OI; Spizzirri UG; Picci N; Leonhardt A; Ritschel M; Büchner B
    J Pharm Pharmacol; 2011 Feb; 63(2):179-88. PubMed ID: 21235581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The antioxidant and pro-oxidant activity of vitamin C and trolox in vitro: a comparative study.
    Poljsak B; Raspor P
    J Appl Toxicol; 2008 Mar; 28(2):183-8. PubMed ID: 17582581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the free-radical-scavenging activity of diclofenac acid on the free-radical-induced haemolysis of human erythrocytes.
    Tang YZ; Liu ZQ
    J Pharm Pharmacol; 2006 May; 58(5):625-31. PubMed ID: 16640831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives.
    Lu Z; Nie G; Belton PS; Tang H; Zhao B
    Neurochem Int; 2006 Mar; 48(4):263-74. PubMed ID: 16343693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of free radical scavenging activity of some antioxidants.
    Miftode AM; Stefanache A; Spac A; Dorneanu V
    Rev Med Chir Soc Med Nat Iasi; 2014; 118(1):239-43. PubMed ID: 24741807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of radical scavenging capacity of antioxidants contained in foods and beverages in plasma solution.
    Morita M; Naito Y; Yoshikawa T; Niki E
    Food Funct; 2015 May; 6(5):1591-9. PubMed ID: 25857408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antioxidant activity of a combinatorial library of emulsifier-antioxidant bioconjugates.
    Hunneche CS; Lund MN; Skibsted LH; Nielsen J
    J Agric Food Chem; 2008 Oct; 56(19):9258-68. PubMed ID: 18783244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The location of amphiphobic antioxidants in micellar systems: The diving-swan analogy.
    Lopez de Arbina A; Losada-Barreiro S; Rezende MC; Vidal M; Aliaga C
    Food Chem; 2019 May; 279():288-293. PubMed ID: 30611492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA-breaking versus DNA-protecting activity of four phenolic compounds in vitro.
    Li AS; Bandy B; Tsang SS; Davison AJ
    Free Radic Res; 2000 Nov; 33(5):551-66. PubMed ID: 11200088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antioxidant constituents of radish sprout (Kaiware-daikon), Raphanus sativus L.
    Takaya Y; Kondo Y; Furukawa T; Niwa M
    J Agric Food Chem; 2003 Dec; 51(27):8061-6. PubMed ID: 14690397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic and comparative studies of melatonin and classic antioxidants in terms of their interactions with the ABTS cation radical.
    Tan DX; Hardeland R; Manchester LC; Poeggeler B; Lopez-Burillo S; Mayo JC; Sainz RM; Reiter RJ
    J Pineal Res; 2003 May; 34(4):249-59. PubMed ID: 12662346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.