BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 25127630)

  • 1. A fluorescence glucose sensor based on pH induced conformational switch of i-motif DNA.
    Ke Q; Zheng Y; Yang F; Zhang H; Yang X
    Talanta; 2014 Nov; 129():539-44. PubMed ID: 25127630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiazole orange as a fluorescent probe: Label-free and selective detection of silver ions based on the structural change of i-motif DNA at neutral pH.
    Kang BH; Gao ZF; Li N; Shi Y; Li NB; Luo HQ
    Talanta; 2016 Aug; 156-157():141-146. PubMed ID: 27260446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fluorescent glucose biosensor based on immobilized glucose oxidase on bamboo inner shell membrane.
    Yang X; Zhou Z; Xiao D; Choi MM
    Biosens Bioelectron; 2006 Feb; 21(8):1613-20. PubMed ID: 16168632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose concentration determination based on silica sol-gel encapsulated glucose oxidase optical biosensor arrays.
    Chang G; Tatsu Y; Goto T; Imaishi H; Morigaki K
    Talanta; 2010 Nov; 83(1):61-5. PubMed ID: 21035644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly sensitive glucose biosensor based on the effective immobilization of glucose oxidase/carbon-nanotube and gold nanoparticle in nafion film and peroxyoxalate chemiluminescence reaction of a new fluorophore.
    Zargoosh K; Chaichi MJ; Shamsipur M; Hossienkhani S; Asghari S; Qandalee M
    Talanta; 2012 May; 93():37-43. PubMed ID: 22483873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel immobilization multienzyme glucose fluorescence capillary biosensor.
    Li YS; Du YD; Chen TM; Gao XF
    Biosens Bioelectron; 2010 Feb; 25(6):1382-8. PubMed ID: 19939662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of Ag nanoparticle-decorated 2,4,6-tris(2-pyridyl)-1,3,5-triazine nanobelts and their application for H2O2 and glucose detection.
    Qin X; Lu W; Luo Y; Chang G; Asiri AM; Al-Youbi AO; Sun X
    Analyst; 2012 Feb; 137(4):939-43. PubMed ID: 22179818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of glucose via enzyme-coupling reaction based on a DT-diaphorase fluorescence probe.
    Gao X; Li X; Wan Q; Li Z; Ma H
    Talanta; 2014 Mar; 120():456-61. PubMed ID: 24468396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual color fluorescence quantitative detection of specific single-stranded DNA with molecular beacons and nucleic acid dye SYBR Green I.
    Xiang DS; Zhou GH; Luo M; Ji XH; He ZK
    Analyst; 2012 Aug; 137(16):3787-93. PubMed ID: 22763945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme-driven i-motif DNA folding for logic operations and fluorescent biosensing.
    Wang M; Zhang G; Zhang D
    Chem Commun (Camb); 2015 Mar; 51(18):3812-5. PubMed ID: 25648065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of amperometric biosensor for glucose based on a novel attractive enzyme immobilization matrix: calcium carbonate nanoparticles.
    Shan D; Zhu M; Xue H; Cosnier S
    Biosens Bioelectron; 2007 Mar; 22(8):1612-7. PubMed ID: 16920350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo fluorescence detection of glucose using a single-walled carbon nanotube optical sensor: design, fluorophore properties, advantages, and disadvantages.
    Barone PW; Parker RS; Strano MS
    Anal Chem; 2005 Dec; 77(23):7556-62. PubMed ID: 16316162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose biosensor based on the room-temperature phosphorescence of TiO2/SiO2 nanocomposite.
    Li Y; Liu X; Yuan H; Xiao D
    Biosens Bioelectron; 2009 Aug; 24(12):3706-10. PubMed ID: 19541471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fluorescence turn-on method for real-time monitoring of protease activity based on the electron transfer between a fluorophore labeled oligonucleotide and cytochrome c.
    Liao D; Li Y; Chen J; Yu C
    Anal Chim Acta; 2013 Jun; 784():72-6. PubMed ID: 23746411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amperometric glucose biosensor with remarkable acid stability based on glucose oxidase entrapped in colloidal gold-modified carbon ionic liquid electrode.
    Liu X; Zeng X; Mai N; Liu Y; Kong B; Li Y; Wei W; Luo S
    Biosens Bioelectron; 2010 Aug; 25(12):2675-9. PubMed ID: 20510599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A porous poly(acrylonitrile-co-acrylic acid) film-based glucose biosensor constructed by electrochemical entrapment.
    Shan D; He Y; Wang S; Xue H; Zheng H
    Anal Biochem; 2006 Sep; 356(2):215-21. PubMed ID: 16842730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of gold nanoparticles on eggshell membrane and their biosensing application.
    Zheng B; Qian L; Yuan H; Xiao D; Yang X; Paau MC; Choi MM
    Talanta; 2010 Jun; 82(1):177-83. PubMed ID: 20685454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of hydrophobic palladium nanoparticles for the development of electrochemical glucose biosensor.
    Li Z; Wang X; Wen G; Shuang S; Dong C; Paau MC; Choi MM
    Biosens Bioelectron; 2011 Jul; 26(11):4619-23. PubMed ID: 21612909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A glucose biosensor based on chitosan-glucose oxidase-gold nanoparticles biocomposite formed by one-step electrodeposition.
    Luo XL; Xu JJ; Du Y; Chen HY
    Anal Biochem; 2004 Nov; 334(2):284-9. PubMed ID: 15494135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual fluorescence detection of H2O2 and glucose based on "molecular beacon"-hosted Hoechst dyes.
    Lu LF; Li YY; Zhang M; Shi G
    Analyst; 2015 May; 140(10):3642-7. PubMed ID: 25868604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.