BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 25128257)

  • 1. Digital filter design for electrophysiological data--a practical approach.
    Widmann A; Schröger E; Maess B
    J Neurosci Methods; 2015 Jul; 250():34-46. PubMed ID: 25128257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal digital filters for analyzing the mid-latency auditory P50 event-related potential in patients with Alzheimer's disease.
    Liljander S; Holm A; Keski-Säntti P; Partanen JV
    J Neurosci Methods; 2016 Jun; 266():50-67. PubMed ID: 27015794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple algorithm for a digital three-pole Butterworth filter of arbitrary cut-off frequency: application to digital electroencephalography.
    Alarcon G; Guy CN; Binnie CD
    J Neurosci Methods; 2000 Dec; 104(1):35-44. PubMed ID: 11163409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Comparison of digital filter and wavelet transform for extracting electroencephalogram rhythm].
    Xie T; Pei J; Jia C; Chen S; Qiao D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Aug; 26(4):743-7. PubMed ID: 19813601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-shift denoising source separation.
    de Cheveigné A
    J Neurosci Methods; 2010 May; 189(1):113-20. PubMed ID: 20298717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient FIR Filter Implementations for Multichannel BCIs Using Xilinx System Generator.
    Ghani U; Wasim M; Khan US; Mubasher Saleem M; Hassan A; Rashid N; Islam Tiwana M; Hamza A; Kashif A
    Biomed Res Int; 2018; 2018():9861350. PubMed ID: 29568777
    [No Abstract]   [Full Text] [Related]  

  • 7. Systematic biases in early ERP and ERF components as a result of high-pass filtering.
    Acunzo DJ; Mackenzie G; van Rossum MC
    J Neurosci Methods; 2012 Jul; 209(1):212-8. PubMed ID: 22743800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Filtering and thresholding the analytic signal envelope in order to improve peak and spike noise reduction in EEG signals.
    Melia U; Clariá F; Vallverdú M; Caminal P
    Med Eng Phys; 2014 Apr; 36(4):547-53. PubMed ID: 24365255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behaviour of Granger causality under filtering: theoretical invariance and practical application.
    Barnett L; Seth AK
    J Neurosci Methods; 2011 Oct; 201(2):404-19. PubMed ID: 21864571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Improved VLSI Design of the ALU Based FIR Filter for Biomedical Image Filtering Application.
    Arulkumar M; Chandrasekaran M
    Curr Med Imaging; 2021; 17(2):276-287. PubMed ID: 32807061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filters: When, Why, and How (Not) to Use Them.
    de Cheveigné A; Nelken I
    Neuron; 2019 Apr; 102(2):280-293. PubMed ID: 30998899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing power line noise in EEG and MEG data via spectrum interpolation.
    Leske S; Dalal SS
    Neuroimage; 2019 Apr; 189():763-776. PubMed ID: 30639330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Digital Butterworth filter for subtracting noise from low magnitude surface electromyogram.
    Mello RG; Oliveira LF; Nadal J
    Comput Methods Programs Biomed; 2007 Jul; 87(1):28-35. PubMed ID: 17548125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel method for removal of deep brain stimulation artifact from electroencephalography.
    Sun Y; Farzan F; Garcia Dominguez L; Barr MS; Giacobbe P; Lozano AM; Wong W; Daskalakis ZJ
    J Neurosci Methods; 2014 Nov; 237():33-40. PubMed ID: 25218560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive digital notch filter design on the unit circle for the removal of powerline noise from biomedical signals.
    Ferdjallah M; Barr RE
    IEEE Trans Biomed Eng; 1994 Jun; 41(6):529-36. PubMed ID: 7927372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Filtering Eye-Tracking Data From an EyeLink 1000: Comparing Heuristic, Savitzky-Golay, IIR and FIR Digital Filters.
    Raju MH; Friedman L; Bouman TM; Komogortsev OV
    J Eye Mov Res; 2021; 14(3):. PubMed ID: 38957346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artifact reduction for simultaneous EEG/fMRI recording: adaptive FIR reduction of imaging artifacts.
    Wan X; Iwata K; Riera J; Kitamura M; Kawashima R
    Clin Neurophysiol; 2006 Mar; 117(3):681-92. PubMed ID: 16458593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Smoothing Filters in Analysis of EEG Data for the Medical Diagnostics Purposes.
    Kawala-Sterniuk A; Podpora M; Pelc M; Blaszczyszyn M; Gorzelanczyk EJ; Martinek R; Ozana S
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32024267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a non-linear smoothing filter for the processing of eye-movement signals.
    Engelken EJ; Stevens KW; Enderle JD
    Biomed Sci Instrum; 1990; 26():5-10. PubMed ID: 2334779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of filtering on Granger causality based multivariate causality measures.
    Florin E; Gross J; Pfeifer J; Fink GR; Timmermann L
    Neuroimage; 2010 Apr; 50(2):577-88. PubMed ID: 20026279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.