BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25128376)

  • 1. The influence of age on adaptive bone formation and bone resorption.
    Birkhold AI; Razi H; Duda GN; Weinkamer R; Checa S; Willie BM
    Biomaterials; 2014 Nov; 35(34):9290-301. PubMed ID: 25128376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mineralizing surface is the main target of mechanical stimulation independent of age: 3D dynamic in vivo morphometry.
    Birkhold AI; Razi H; Duda GN; Weinkamer R; Checa S; Willie BM
    Bone; 2014 Sep; 66():15-25. PubMed ID: 24882735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mouse tail vertebrae adapt to cyclic mechanical loading by increasing bone formation rate and decreasing bone resorption rate as shown by time-lapsed in vivo imaging of dynamic bone morphometry.
    Lambers FM; Schulte FA; Kuhn G; Webster DJ; Müller R
    Bone; 2011 Dec; 49(6):1340-50. PubMed ID: 21964411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo micro-computed tomography allows direct three-dimensional quantification of both bone formation and bone resorption parameters using time-lapsed imaging.
    Schulte FA; Lambers FM; Kuhn G; Müller R
    Bone; 2011 Mar; 48(3):433-42. PubMed ID: 20950723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Additional weight bearing during exercise and estrogen in the rat: the effect on bone mass, turnover, and structure.
    Tromp AM; Bravenboer N; Tanck E; Oostlander A; Holzmann PJ; Kostense PJ; Roos JC; Burger EH; Huiskes R; Lips P
    Calcif Tissue Int; 2006 Dec; 79(6):404-15. PubMed ID: 17160577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo monitoring of bone architecture and remodeling after implant insertion: The different responses of cortical and trabecular bone.
    Li Z; Kuhn G; von Salis-Soglio M; Cooke SJ; Schirmer M; Müller R; Ruffoni D
    Bone; 2015 Dec; 81():468-477. PubMed ID: 26303288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tomography-Based Quantification of Regional Differences in Cortical Bone Surface Remodeling and Mechano-Response.
    Birkhold AI; Razi H; Duda GN; Checa S; Willie BM
    Calcif Tissue Int; 2017 Mar; 100(3):255-270. PubMed ID: 27999894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trabecular bone adapts to long-term cyclic loading by increasing stiffness and normalization of dynamic morphometric rates.
    Lambers FM; Koch K; Kuhn G; Ruffoni D; Weigt C; Schulte FA; Müller R
    Bone; 2013 Aug; 55(2):325-34. PubMed ID: 23624292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of in vivo loading on bone composition varies with animal age.
    Aido M; Kerschnitzki M; Hoerth R; Checa S; Spevak L; Boskey AL; Fratzl P; Duda GN; Wagermaier W; Willie BM
    Exp Gerontol; 2015 Mar; 63():48-58. PubMed ID: 25639943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mineralization kinetics in murine trabecular bone quantified by time-lapsed in vivo micro-computed tomography.
    Lukas C; Ruffoni D; Lambers FM; Schulte FA; Kuhn G; Kollmannsberger P; Weinkamer R; Müller R
    Bone; 2013 Sep; 56(1):55-60. PubMed ID: 23684803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disuse rescues the age-impaired adaptive response to external loading in mice.
    Meakin LB; Delisser PJ; Galea GL; Lanyon LE; Price JS
    Osteoporos Int; 2015 Nov; 26(11):2703-8. PubMed ID: 25920749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone adaptation to cyclic loading in murine caudal vertebrae is maintained with age and directly correlated to the local micromechanical environment.
    Lambers FM; Kuhn G; Weigt C; Koch KM; Schulte FA; Müller R
    J Biomech; 2015 Apr; 48(6):1179-87. PubMed ID: 25543278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo validation of a computational bone adaptation model using open-loop control and time-lapsed micro-computed tomography.
    Schulte FA; Lambers FM; Webster DJ; Kuhn G; Müller R
    Bone; 2011 Dec; 49(6):1166-72. PubMed ID: 21890010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diaphyseal bone formation in murine tibiae in response to knee loading.
    Zhang P; Tanaka SM; Jiang H; Su M; Yokota H
    J Appl Physiol (1985); 2006 May; 100(5):1452-9. PubMed ID: 16410382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo loading increases mechanical properties of scaffold by affecting bone formation and bone resorption rates.
    Roshan-Ghias A; Lambers FM; Gholam-Rezaee M; Müller R; Pioletti DP
    Bone; 2011 Dec; 49(6):1357-64. PubMed ID: 21958844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aging Leads to a Dysregulation in Mechanically Driven Bone Formation and Resorption.
    Razi H; Birkhold AI; Weinkamer R; Duda GN; Willie BM; Checa S
    J Bone Miner Res; 2015 Oct; 30(10):1864-73. PubMed ID: 25857303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blockade of beta-adrenergic signaling does not influence the bone mechano-adaptive response in mice.
    Marenzana M; De Souza RL; Chenu C
    Bone; 2007 Aug; 41(2):206-15. PubMed ID: 17543595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased Cellular Presence After Sciatic Neurectomy Improves the Bone Mechano-adaptive Response in Aged Mice.
    Piet J; Hu D; Meslier Q; Baron R; Shefelbine SJ
    Calcif Tissue Int; 2019 Sep; 105(3):316-330. PubMed ID: 31243483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climbing exercise increases bone mass and trabecular bone turnover through transient regulation of marrow osteogenic and osteoclastogenic potentials in mice.
    Mori T; Okimoto N; Sakai A; Okazaki Y; Nakura N; Notomi T; Nakamura T
    J Bone Miner Res; 2003 Nov; 18(11):2002-9. PubMed ID: 14606513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Periosteal Bone Surface is Less Mechano-Responsive than the Endocortical.
    Birkhold AI; Razi H; Duda GN; Weinkamer R; Checa S; Willie BM
    Sci Rep; 2016 Mar; 6():23480. PubMed ID: 27004741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.