These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 25128376)
1. The influence of age on adaptive bone formation and bone resorption. Birkhold AI; Razi H; Duda GN; Weinkamer R; Checa S; Willie BM Biomaterials; 2014 Nov; 35(34):9290-301. PubMed ID: 25128376 [TBL] [Abstract][Full Text] [Related]
2. Mineralizing surface is the main target of mechanical stimulation independent of age: 3D dynamic in vivo morphometry. Birkhold AI; Razi H; Duda GN; Weinkamer R; Checa S; Willie BM Bone; 2014 Sep; 66():15-25. PubMed ID: 24882735 [TBL] [Abstract][Full Text] [Related]
3. Mouse tail vertebrae adapt to cyclic mechanical loading by increasing bone formation rate and decreasing bone resorption rate as shown by time-lapsed in vivo imaging of dynamic bone morphometry. Lambers FM; Schulte FA; Kuhn G; Webster DJ; Müller R Bone; 2011 Dec; 49(6):1340-50. PubMed ID: 21964411 [TBL] [Abstract][Full Text] [Related]
4. In vivo micro-computed tomography allows direct three-dimensional quantification of both bone formation and bone resorption parameters using time-lapsed imaging. Schulte FA; Lambers FM; Kuhn G; Müller R Bone; 2011 Mar; 48(3):433-42. PubMed ID: 20950723 [TBL] [Abstract][Full Text] [Related]
5. Additional weight bearing during exercise and estrogen in the rat: the effect on bone mass, turnover, and structure. Tromp AM; Bravenboer N; Tanck E; Oostlander A; Holzmann PJ; Kostense PJ; Roos JC; Burger EH; Huiskes R; Lips P Calcif Tissue Int; 2006 Dec; 79(6):404-15. PubMed ID: 17160577 [TBL] [Abstract][Full Text] [Related]
6. In vivo monitoring of bone architecture and remodeling after implant insertion: The different responses of cortical and trabecular bone. Li Z; Kuhn G; von Salis-Soglio M; Cooke SJ; Schirmer M; Müller R; Ruffoni D Bone; 2015 Dec; 81():468-477. PubMed ID: 26303288 [TBL] [Abstract][Full Text] [Related]
7. Tomography-Based Quantification of Regional Differences in Cortical Bone Surface Remodeling and Mechano-Response. Birkhold AI; Razi H; Duda GN; Checa S; Willie BM Calcif Tissue Int; 2017 Mar; 100(3):255-270. PubMed ID: 27999894 [TBL] [Abstract][Full Text] [Related]
8. Trabecular bone adapts to long-term cyclic loading by increasing stiffness and normalization of dynamic morphometric rates. Lambers FM; Koch K; Kuhn G; Ruffoni D; Weigt C; Schulte FA; Müller R Bone; 2013 Aug; 55(2):325-34. PubMed ID: 23624292 [TBL] [Abstract][Full Text] [Related]
9. Effect of in vivo loading on bone composition varies with animal age. Aido M; Kerschnitzki M; Hoerth R; Checa S; Spevak L; Boskey AL; Fratzl P; Duda GN; Wagermaier W; Willie BM Exp Gerontol; 2015 Mar; 63():48-58. PubMed ID: 25639943 [TBL] [Abstract][Full Text] [Related]
10. Mineralization kinetics in murine trabecular bone quantified by time-lapsed in vivo micro-computed tomography. Lukas C; Ruffoni D; Lambers FM; Schulte FA; Kuhn G; Kollmannsberger P; Weinkamer R; Müller R Bone; 2013 Sep; 56(1):55-60. PubMed ID: 23684803 [TBL] [Abstract][Full Text] [Related]
12. Bone adaptation to cyclic loading in murine caudal vertebrae is maintained with age and directly correlated to the local micromechanical environment. Lambers FM; Kuhn G; Weigt C; Koch KM; Schulte FA; Müller R J Biomech; 2015 Apr; 48(6):1179-87. PubMed ID: 25543278 [TBL] [Abstract][Full Text] [Related]
13. In vivo validation of a computational bone adaptation model using open-loop control and time-lapsed micro-computed tomography. Schulte FA; Lambers FM; Webster DJ; Kuhn G; Müller R Bone; 2011 Dec; 49(6):1166-72. PubMed ID: 21890010 [TBL] [Abstract][Full Text] [Related]
14. Diaphyseal bone formation in murine tibiae in response to knee loading. Zhang P; Tanaka SM; Jiang H; Su M; Yokota H J Appl Physiol (1985); 2006 May; 100(5):1452-9. PubMed ID: 16410382 [TBL] [Abstract][Full Text] [Related]
15. In vivo loading increases mechanical properties of scaffold by affecting bone formation and bone resorption rates. Roshan-Ghias A; Lambers FM; Gholam-Rezaee M; Müller R; Pioletti DP Bone; 2011 Dec; 49(6):1357-64. PubMed ID: 21958844 [TBL] [Abstract][Full Text] [Related]
16. Aging Leads to a Dysregulation in Mechanically Driven Bone Formation and Resorption. Razi H; Birkhold AI; Weinkamer R; Duda GN; Willie BM; Checa S J Bone Miner Res; 2015 Oct; 30(10):1864-73. PubMed ID: 25857303 [TBL] [Abstract][Full Text] [Related]
17. Blockade of beta-adrenergic signaling does not influence the bone mechano-adaptive response in mice. Marenzana M; De Souza RL; Chenu C Bone; 2007 Aug; 41(2):206-15. PubMed ID: 17543595 [TBL] [Abstract][Full Text] [Related]
18. Increased Cellular Presence After Sciatic Neurectomy Improves the Bone Mechano-adaptive Response in Aged Mice. Piet J; Hu D; Meslier Q; Baron R; Shefelbine SJ Calcif Tissue Int; 2019 Sep; 105(3):316-330. PubMed ID: 31243483 [TBL] [Abstract][Full Text] [Related]
19. Climbing exercise increases bone mass and trabecular bone turnover through transient regulation of marrow osteogenic and osteoclastogenic potentials in mice. Mori T; Okimoto N; Sakai A; Okazaki Y; Nakura N; Notomi T; Nakamura T J Bone Miner Res; 2003 Nov; 18(11):2002-9. PubMed ID: 14606513 [TBL] [Abstract][Full Text] [Related]
20. The Periosteal Bone Surface is Less Mechano-Responsive than the Endocortical. Birkhold AI; Razi H; Duda GN; Weinkamer R; Checa S; Willie BM Sci Rep; 2016 Mar; 6():23480. PubMed ID: 27004741 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]