These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 25128376)

  • 21. Non-invasive axial loading of mouse tibiae increases cortical bone formation and modifies trabecular organization: a new model to study cortical and cancellous compartments in a single loaded element.
    De Souza RL; Matsuura M; Eckstein F; Rawlinson SC; Lanyon LE; Pitsillides AA
    Bone; 2005 Dec; 37(6):810-8. PubMed ID: 16198164
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental and finite element analysis of the mouse caudal vertebrae loading model: prediction of cortical and trabecular bone adaptation.
    Webster D; Wirth A; van Lenthe GH; Müller R
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):221-30. PubMed ID: 21472383
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reduced bone formation and increased bone resorption: rational targets for the treatment of osteoporosis.
    Seeman E
    Osteoporos Int; 2003; 14 Suppl 3():S2-8. PubMed ID: 12730770
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Local mechanical stimuli regulate bone formation and resorption in mice at the tissue level.
    Schulte FA; Ruffoni D; Lambers FM; Christen D; Webster DJ; Kuhn G; Müller R
    PLoS One; 2013; 8(4):e62172. PubMed ID: 23637993
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cancellous bone adaptation to tibial compression is not sex dependent in growing mice.
    Lynch ME; Main RP; Xu Q; Walsh DJ; Schaffler MB; Wright TM; van der Meulen MC
    J Appl Physiol (1985); 2010 Sep; 109(3):685-91. PubMed ID: 20576844
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Constant strain rate and peri-implant bone modeling: an in vivo longitudinal micro-CT analysis.
    De Smet E; Jaecques SV; Wevers M; Sloten JV; Naert IE
    Clin Implant Dent Relat Res; 2013 Jun; 15(3):358-66. PubMed ID: 21815993
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Osteopenia and impaired fracture healing in aged EP4 receptor knockout mice.
    Li M; Healy DR; Li Y; Simmons HA; Crawford DT; Ke HZ; Pan LC; Brown TA; Thompson DD
    Bone; 2005 Jul; 37(1):46-54. PubMed ID: 15869929
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Longitudinal in vivo imaging of bone formation and resorption using fluorescence molecular tomography.
    Lambers FM; Stuker F; Weigt C; Kuhn G; Koch K; Schulte FA; Ripoll J; Rudin M; Müller R
    Bone; 2013 Feb; 52(2):587-95. PubMed ID: 23142804
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monitoring in vivo (re)modeling: a computational approach using 4D microCT data to quantify bone surface movements.
    Birkhold AI; Razi H; Weinkamer R; Duda GN; Checa S; Willie BM
    Bone; 2015 Jun; 75():210-21. PubMed ID: 25746796
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bone remodelling in the mouse tibia is spatio-temporally modulated by oestrogen deficiency and external mechanical loading: A combined in vivo/in silico study.
    Cheong VS; Roberts BC; Kadirkamanathan V; Dall'Ara E
    Acta Biomater; 2020 Oct; 116():302-317. PubMed ID: 32911105
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Loading induces site-specific increases in mineral content assessed by microcomputed tomography of the mouse tibia.
    Fritton JC; Myers ER; Wright TM; van der Meulen MC
    Bone; 2005 Jun; 36(6):1030-8. PubMed ID: 15878316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanical stimulation of tissue repair in the hydraulic bone chamber.
    Guldberg RE; Caldwell NJ; Guo XE; Goulet RW; Hollister SJ; Goldstein SA
    J Bone Miner Res; 1997 Aug; 12(8):1295-302. PubMed ID: 9258761
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical stimulation of bone marrow in situ induces bone formation in trabecular explants.
    Birmingham E; Kreipke TC; Dolan EB; Coughlin TR; Owens P; McNamara LM; Niebur GL; McHugh PE
    Ann Biomed Eng; 2015 Apr; 43(4):1036-50. PubMed ID: 25281407
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Skeletal development and bone functional adaptation.
    Carter DR; Orr TE
    J Bone Miner Res; 1992 Dec; 7 Suppl 2():S389-95. PubMed ID: 1485546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diminished response to in vivo mechanical loading in trabecular and not cortical bone in adulthood of female C57Bl/6 mice coincides with a reduction in deformation to load.
    Willie BM; Birkhold AI; Razi H; Thiele T; Aido M; Kruck B; Schill A; Checa S; Main RP; Duda GN
    Bone; 2013 Aug; 55(2):335-46. PubMed ID: 23643681
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strain rate influences periosteal adaptation in mature bone.
    LaMothe JM; Hamilton NH; Zernicke RF
    Med Eng Phys; 2005 May; 27(4):277-84. PubMed ID: 15823468
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bone remodelling in humans is load-driven but not lazy.
    Christen P; Ito K; Ellouz R; Boutroy S; Sornay-Rendu E; Chapurlat RD; van Rietbergen B
    Nat Commun; 2014 Sep; 5():4855. PubMed ID: 25209333
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of mechanical stimuli on adaptive remodeling of condylar cartilage.
    Sriram D; Jones A; Alatli-Burt I; Darendeliler MA
    J Dent Res; 2009 May; 88(5):466-70. PubMed ID: 19493892
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Load-adaptive bone remodeling simulations reveal osteoporotic microstructural and mechanical changes in whole human vertebrae.
    Badilatti SD; Christen P; Parkinson I; Müller R
    J Biomech; 2016 Dec; 49(16):3770-3779. PubMed ID: 27793404
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Skeletal maturity leads to a reduction in the strain magnitudes induced within the bone: a murine tibia study.
    Razi H; Birkhold AI; Zaslansky P; Weinkamer R; Duda GN; Willie BM; Checa S
    Acta Biomater; 2015 Feb; 13():301-10. PubMed ID: 25463494
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.