These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 25128376)

  • 41. Skeletal maturity leads to a reduction in the strain magnitudes induced within the bone: a murine tibia study.
    Razi H; Birkhold AI; Zaslansky P; Weinkamer R; Duda GN; Willie BM; Checa S
    Acta Biomater; 2015 Feb; 13():301-10. PubMed ID: 25463494
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Disruption of the p53 gene results in preserved trabecular bone mass and bone formation after mechanical unloading.
    Sakai A; Sakata T; Tanaka S; Okazaki R; Kunugita N; Norimura T; Nakamura T
    J Bone Miner Res; 2002 Jan; 17(1):119-27. PubMed ID: 11771658
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Surface-specific effects of a PPARgamma agonist, darglitazone, on bone in mice.
    Li M; Pan LC; Simmons HA; Li Y; Healy DR; Robinson BS; Ke HZ; Brown TA
    Bone; 2006 Oct; 39(4):796-806. PubMed ID: 16759917
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The skeleton in primary hyperparathyroidism: a review focusing on bone remodeling, structure, mass, and fracture.
    Christiansen P
    APMIS Suppl; 2001; (102):1-52. PubMed ID: 11419022
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vivo fatigue loading of the rat ulna induces both bone formation and resorption and leads to time-related changes in bone mechanical properties and density.
    Hsieh YF; Silva MJ
    J Orthop Res; 2002 Jul; 20(4):764-71. PubMed ID: 12168665
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanical loading of mouse caudal vertebrae increases trabecular and cortical bone mass-dependence on dose and genotype.
    Webster D; Wasserman E; Ehrbar M; Weber F; Bab I; Müller R
    Biomech Model Mechanobiol; 2010 Dec; 9(6):737-47. PubMed ID: 20352279
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechano-Regulation of Trabecular Bone Adaptation Is Controlled by the Local
    Scheuren AC; Vallaster P; Kuhn GA; Paul GR; Malhotra A; Kameo Y; Müller R
    Front Bioeng Biotechnol; 2020; 8():566346. PubMed ID: 33154964
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Trabecular architecture can remain intact for both disuse and overload enhanced resorption characteristics.
    Tanck E; Ruimerman R; Huiskes R
    J Biomech; 2006; 39(14):2631-7. PubMed ID: 16214155
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Decoding rejuvenating effects of mechanical loading on skeletal aging using in vivo μCT imaging and deep learning.
    Asgharzadeh P; Röhrle O; Willie BM; Birkhold AI
    Acta Biomater; 2020 Apr; 106():193-207. PubMed ID: 32058080
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A three-dimensional simulation of age-related remodeling in trabecular bone.
    Van Der Linden JC; Verhaar JA; Weinans H
    J Bone Miner Res; 2001 Apr; 16(4):688-96. PubMed ID: 11315996
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Soluble RANKL induces high bone turnover and decreases bone volume, density, and strength in mice.
    Lloyd SA; Yuan YY; Kostenuik PJ; Ominsky MS; Lau AG; Morony S; Stolina M; Asuncion FJ; Bateman TA
    Calcif Tissue Int; 2008 May; 82(5):361-72. PubMed ID: 18465074
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanical force-induced midpalatal suture remodeling in mice.
    Hou B; Fukai N; Olsen BR
    Bone; 2007 Jun; 40(6):1483-93. PubMed ID: 17398175
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sympathetic nervous system does not mediate the load-induced cortical new bone formation.
    de Souza RL; Pitsillides AA; Lanyon LE; Skerry TM; Chenu C
    J Bone Miner Res; 2005 Dec; 20(12):2159-68. PubMed ID: 16294269
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of controlled early implant loading on bone healing and bone mass in guinea pigs, as assessed by micro-CT and histology.
    De Smet E; Jaecques SV; Wevers M; Jansen JA; Jacobs R; Sloten JV; Naert IE
    Eur J Oral Sci; 2006 Jun; 114(3):232-42. PubMed ID: 16776773
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Low-level accelerations applied in the absence of weight bearing can enhance trabecular bone formation.
    Garman R; Gaudette G; Donahue LR; Rubin C; Judex S
    J Orthop Res; 2007 Jun; 25(6):732-40. PubMed ID: 17318899
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of calcitonin gene-related peptide in functional adaptation of the skeleton.
    Sample SJ; Heaton CM; Behan M; Bleedorn JA; Racette MA; Hao Z; Muir P
    PLoS One; 2014; 9(12):e113959. PubMed ID: 25536054
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Age-related variations in the microstructure of human tibial cancellous bone.
    Ding M; Odgaard A; Linde F; Hvid I
    J Orthop Res; 2002 May; 20(3):615-21. PubMed ID: 12038639
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Life-long caloric restriction reveals biphasic and dimorphic effects on bone metabolism in rodents.
    Tatsumi S; Ito M; Asaba Y; Tsutsumi K; Ikeda K
    Endocrinology; 2008 Feb; 149(2):634-41. PubMed ID: 17991723
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Low-magnitude mechanical loading becomes osteogenic when rest is inserted between each load cycle.
    Srinivasan S; Weimer DA; Agans SC; Bain SD; Gross TS
    J Bone Miner Res; 2002 Sep; 17(9):1613-20. PubMed ID: 12211431
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Skeletal overexpression of noggin results in osteopenia and reduced bone formation.
    Devlin RD; Du Z; Pereira RC; Kimble RB; Economides AN; Jorgetti V; Canalis E
    Endocrinology; 2003 May; 144(5):1972-8. PubMed ID: 12697704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.