These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25128621)

  • 21. Micromechanical measurement of AChBP binding for label-free drug discovery.
    Buchapudi K; Xu X; Ataian Y; Ji HF; Schulte M
    Analyst; 2012 Jan; 137(1):263-8. PubMed ID: 22046583
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Establishment of the micro-stress sensor measurement system for invisible aligner technique].
    Ren CC; Bai YX; Wang ZY; Zhang M
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2011 Oct; 46(10):600-3. PubMed ID: 22321629
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast.
    Kennedy S; Geradts J; Bydlon T; Brown JQ; Gallagher J; Junker M; Barry W; Ramanujam N; Wilke L
    Breast Cancer Res; 2010; 12(6):R91. PubMed ID: 21054873
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MEMS micro-coils for magnetic neurostimulation.
    Liu X; Whalen AJ; Ryu SB; Lee SW; Fried SI; Kim K; Cai C; Lauritzen M; Bertram N; Chang B; Yu T; Han A
    Biosens Bioelectron; 2023 May; 227():115143. PubMed ID: 36805270
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A fluidics-based impact sensor.
    Takahashi D; Hara K; Okano T; Suzuki H
    PLoS One; 2018; 13(4):e0195741. PubMed ID: 29634750
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A rapid and practical technique for real-time monitoring of biomolecular interactions using mechanical responses of macromolecules.
    Tarhan MC; Lafitte N; Tauran Y; Jalabert L; Kumemura M; Perret G; Kim B; Coleman AW; Fujita H; Collard D
    Sci Rep; 2016 Jun; 6():28001. PubMed ID: 27307109
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical response of polyacrylamide breast tissue phantoms: Formulation, characterization and modeling.
    Rao SN; Mythravaruni P; Arunachalam K; Ravindran P
    J Mech Behav Biomed Mater; 2022 May; 129():105125. PubMed ID: 35219963
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A monolithically integrated microcantilever biosensor based on partially depleted SOI CMOS technology.
    Liu Y; Tian Y; Lin C; Miao J; Yu X
    Microsyst Nanoeng; 2023; 9():60. PubMed ID: 37206699
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanochannel system fabricated by MEMS microfabrication and atomic force microscopy.
    Wang Z; Wang D; Jiao N; Tung S; Dong Z
    IET Nanobiotechnol; 2011 Dec; 5(4):108-13. PubMed ID: 22149865
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resonance Raman and Raman spectroscopy for breast cancer detection.
    Liu CH; Zhou Y; Sun Y; Li JY; Zhou LX; Boydston-White S; Masilamani V; Zhu K; Pu Y; Alfano RR
    Technol Cancer Res Treat; 2013 Aug; 12(4):371-82. PubMed ID: 23448574
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Breast cancer diagnosis using N2 laser excited autofluorescence spectroscopy.
    Gupta PK; Majumder SK; Uppal A
    Lasers Surg Med; 1997; 21(5):417-22. PubMed ID: 9365951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of materials for micro-electro-mechanical systems on PCR yield.
    Potrich C; Lunelli L; Forti S; Vozzi D; Pasquardini L; Vanzetti L; Panciatichi C; Anderle M; Pederzolli C
    Eur Biophys J; 2010 May; 39(6):979-86. PubMed ID: 19455320
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Manufacture and characterization of high Q-factor inductors based on CMOS-MEMS techniques.
    Yang MZ; Dai CL; Hong JY
    Sensors (Basel); 2011; 11(10):9798-806. PubMed ID: 22163726
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrical impedance scanning in breast tumor imaging: correlation with the growth pattern of lesion.
    Wang K; Wang T; Fu F; Ji ZY; Liu RG; Liao QM; Dong XZ
    Chin Med J (Engl); 2009 Jul; 122(13):1501-6. PubMed ID: 19719937
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and Application of a High-G Piezoresistive Acceleration Sensor for High-Impact Application.
    Hu X; Mackowiak P; Bäuscher M; Ehrmann O; Lang KD; Schneider-Ramelow M; Linke S; Ngo HD
    Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424199
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancement of silicon using micro-patterned surfaces of thin films.
    Kaivosoja E; Myllymaa S; Kouri VP; Myllymaa K; Lappalainen R; Konttinen YT
    Eur Cell Mater; 2010 Apr; 19():147-57. PubMed ID: 20379964
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polymer nanocomposite nanomechanical cantilever sensors: material characterization, device development and application in explosive vapour detection.
    Seena V; Fernandes A; Pant P; Mukherji S; Rao VR
    Nanotechnology; 2011 Jul; 22(29):295501. PubMed ID: 21673380
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hyperplastic lesions of the human breast: scanning electron microscopy and a review of current knowledge.
    Halter SA; Holt DH; Page DL
    Scan Electron Microsc; 1981; (Pt 3):11-21. PubMed ID: 6276966
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrical detection of C-reactive protein using a single free-standing, thermally controlled piezoresistive microcantilever for highly reproducible and accurate measurements.
    Yen YK; Lai YC; Hong WT; Pheanpanitporn Y; Chen CS; Huang LS
    Sensors (Basel); 2013 Jul; 13(8):9653-68. PubMed ID: 23899933
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nano-mechanical transduction of polymer micro-cantilevers to detect bio-molecular interactions.
    Urwyler P; Köser J; Schift H; Gobrecht J; Müller B
    Biointerphases; 2012 Dec; 7(1-4):6. PubMed ID: 22589049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.