These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 25128756)

  • 21. Contrast mechanisms and image formation in helium ion microscopy.
    Bell DC
    Microsc Microanal; 2009 Apr; 15(2):147-53. PubMed ID: 19284896
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Successful application of Low Voltage Electron Microscopy to practical materials problems.
    Bell DC; Mankin M; Day RW; Erdman N
    Ultramicroscopy; 2014 Oct; 145():56-65. PubMed ID: 24767093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D multi-energy deconvolution electron microscopy.
    de Goede M; Johlin E; Sciacca B; Boughorbel F; Garnett EC
    Nanoscale; 2017 Jan; 9(2):684-689. PubMed ID: 27957576
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electron probe microanalysis of biological soft tissues: principle and technique.
    Lechene C
    Fed Proc; 1980 Sep; 39(11):2871-80. PubMed ID: 7409208
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mass determination of thin biological specimens for use in quantitative electron probe X-ray microanalysis.
    Linders PW; Stols AL; van de Vorstenbosch RA; Stadhouders AM
    Scan Electron Microsc; 1982; (Pt 4):1603-15. PubMed ID: 7184142
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Practical aspects of the use of the X(2) holder for HRTEM-quality TEM sample preparation by FIB.
    van Mierlo W; Geiger D; Robins A; Stumpf M; Ray ML; Fischione P; Kaiser U
    Ultramicroscopy; 2014 Dec; 147():149-55. PubMed ID: 25194827
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Atomically Thin Graphene Windows That Enable High Contrast Electron Microscopy without a Specimen Vacuum Chamber.
    Han Y; Nguyen KX; Ogawa Y; Park J; Muller DA
    Nano Lett; 2016 Dec; 16(12):7427-7432. PubMed ID: 27960512
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic Imaging of Nanostructures in an Electrolyte with a Scanning Electron Microscope.
    Yoon A; Herzog A; Grosse P; Alsem DH; Chee SW; Roldán Cuenya B
    Microsc Microanal; 2021 Feb; 27(1):121-128. PubMed ID: 33403947
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Imaging ultra thin layers with helium ion microscopy: Utilizing the channeling contrast mechanism.
    Hlawacek G; Veligura V; Lorbek S; Mocking TF; George A; van Gastel R; Zandvliet HJ; Poelsema B
    Beilstein J Nanotechnol; 2012; 3():507-12. PubMed ID: 23019545
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low energy nano diffraction (LEND) - A versatile diffraction technique in SEM.
    Schweizer P; Denninger P; Dolle C; Spiecker E
    Ultramicroscopy; 2020 Jun; 213():112956. PubMed ID: 32278249
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel approach to scanning electron microscopy at ambient atmospheric pressure.
    Ominami Y; Kawanishi S; Ushiki T; Ito S
    Microscopy (Oxf); 2015 Apr; 64(2):97-104. PubMed ID: 25537435
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A model calculation of coherence effects in the elastic backscattering of very low energy electrons (1-20 eV) from amorphous ice.
    Liljequist D
    Int J Radiat Biol; 2012 Jan; 88(1-2):50-3. PubMed ID: 21615241
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A high contrast method of unstained biological samples under a thin carbon film by scanning electron microscopy.
    Ogura T
    Biochem Biophys Res Commun; 2008 Dec; 377(1):79-84. PubMed ID: 18834858
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The assessment of microscopic charging effects induced by focused electron and ion beam irradiation of dielectrics.
    Stevens-Kalceff MA; Levick KJ
    Microsc Res Tech; 2007 Mar; 70(3):195-204. PubMed ID: 17279517
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Total rate imaging with x-rays (TRIX)--a simple method of forming a non-projection x-ray image in the SEM using an energy dispersive detector and its application to biological specimens.
    Ingram P; Shelburne JD
    Scan Electron Microsc; 1980; (Pt 2):285-95. PubMed ID: 7423121
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanoskiving: a new method to produce arrays of nanostructures.
    Xu Q; Rioux RM; Dickey MD; Whitesides GM
    Acc Chem Res; 2008 Dec; 41(12):1566-77. PubMed ID: 18646870
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monte Carlo simulation of secondary electron and backscattered electron images in scanning electron microscopy for specimen with complex geometric structure.
    Li HM; Ding ZJ
    Scanning; 2005; 27(5):254-67. PubMed ID: 16268178
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The interaction of a nanoscale coherent helium-ion probe with a crystal.
    D'Alfonso AJ; Forbes BD; Allen LJ
    Ultramicroscopy; 2013 Nov; 134():18-22. PubMed ID: 23876709
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Large damage threshold and small electron escape depth in X-ray absorption spectroscopy of a conjugated polymer thin film.
    Chua LL; Dipankar M; Sivaramakrishnan S; Gao X; Qi D; Wee AT; Ho PK
    Langmuir; 2006 Sep; 22(20):8587-94. PubMed ID: 16981780
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Angle selective backscattered electron contrast in the low-voltage scanning electron microscope: Simulation and experiment for polymers.
    Wan Q; Masters RC; Lidzey D; Abrams KJ; Dapor M; Plenderleith RA; Rimmer S; Claeyssens F; Rodenburg C
    Ultramicroscopy; 2016 Dec; 171():126-138. PubMed ID: 27665428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.