These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 25129521)

  • 21. Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense.
    Gonzalez LE; Bashan Y
    Appl Environ Microbiol; 2000 Apr; 66(4):1527-31. PubMed ID: 10742237
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of growth and lipid production characteristics of Chlorella vulgaris in artificially constructed consortia with symbiotic bacteria.
    Xue L; Shang H; Ma P; Wang X; He X; Niu J; Wu J
    J Basic Microbiol; 2018 Apr; 58(4):358-367. PubMed ID: 29488634
    [TBL] [Abstract][Full Text] [Related]  

  • 23. INVOLVEMENT OF INDOLE-3-ACETIC ACID PRODUCED BY THE GROWTH-PROMOTING BACTERIUM AZOSPIRILLUM SPP. IN PROMOTING GROWTH OF CHLORELLA VULGARIS(1).
    De-Bashan LE; Antoun H; Bashan Y
    J Phycol; 2008 Aug; 44(4):938-47. PubMed ID: 27041612
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The bacterial signal transduction protein GlnB regulates the committed step in fatty acid biosynthesis by acting as a dissociable regulatory subunit of acetyl-CoA carboxylase.
    Gerhardt EC; Rodrigues TE; Müller-Santos M; Pedrosa FO; Souza EM; Forchhammer K; Huergo LF
    Mol Microbiol; 2015 Mar; 95(6):1025-35. PubMed ID: 25557370
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tryptophan, thiamine and indole-3-acetic acid exchange between Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense.
    Palacios OA; Gomez-Anduro G; Bashan Y; de-Bashan LE
    FEMS Microbiol Ecol; 2016 Jun; 92(6):fiw077. PubMed ID: 27090758
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ROLE OF GLUTAMATE DEHYDROGENASE AND GLUTAMINE SYNTHETASE IN CHLORELLA VULGARIS DURING ASSIMILATION OF AMMONIUM WHEN JOINTLY IMMOBILIZED WITH THE MICROALGAE-GROWTH-PROMOTING BACTERIUM AZOSPIRILLUM BRASILENSE(1).
    De-Bashan LE; Magallon P; Antoun H; Bashan Y
    J Phycol; 2008 Oct; 44(5):1188-96. PubMed ID: 27041715
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biosynthesis of high yield fatty acids from Chlorella vulgaris NIES-227 under nitrogen starvation stress during heterotrophic cultivation.
    Shen XF; Chu FF; Lam PK; Zeng RJ
    Water Res; 2015 Sep; 81():294-300. PubMed ID: 26081436
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition.
    Adamakis ID; Lazaridis PA; Terzopoulou E; Torofias S; Valari M; Kalaitzi P; Rousonikolos V; Gkoutzikostas D; Zouboulis A; Zalidis G; Triantafyllidis KS
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):23018-23032. PubMed ID: 29859001
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of various carbon sources on biomass and lipid production of Chlorella vulgaris during nutrient sufficient and nitrogen starvation conditions.
    Abedini Najafabadi H; Malekzadeh M; Jalilian F; Vossoughi M; Pazuki G
    Bioresour Technol; 2015 Mar; 180():311-7. PubMed ID: 25621723
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Maximizing Biomass and Lipid Production in Heterotrophic Culture of Chlorella vulgaris: Techno-Economic Assessment.
    Morowvat MH; Ghasemi Y
    Recent Pat Food Nutr Agric; 2019; 10(2):115-123. PubMed ID: 30205808
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Azospirillum brasilense type VI secretion system promotes cell aggregation, biocontrol protection against phytopathogens and attachment to the microalgae Chlorella sorokiniana.
    Cassan FD; Coniglio A; Amavizca E; Maroniche G; Cascales E; Bashan Y; de-Bashan LE
    Environ Microbiol; 2021 Oct; 23(10):6257-6274. PubMed ID: 34472164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physiological and biochemical characterization of Azospirillum brasilense strains commonly used as plant growth-promoting rhizobacteria.
    Di Salvo LP; Silva E; Teixeira KR; Cote RE; Pereyra MA; García de Salamone IE
    J Basic Microbiol; 2014 Dec; 54(12):1310-21. PubMed ID: 25138314
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31.
    Yeh KL; Chang JS
    Bioresour Technol; 2012 Feb; 105():120-7. PubMed ID: 22189073
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrastructure of interaction in alginate beads between the microalga Chlorella vulgaris with its natural associative bacterium Phyllobacterium myrsinacearum and with the plant growth-promoting bacterium Azospirillum brasilense.
    Lebsky VK; Gonzalez-Bashan LE; Bashan Y
    Can J Microbiol; 2001 Jan; 47(1):1-8. PubMed ID: 15049443
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Effects of different trophic modes on growth characteristics, metabolism and cellular components of Chlorella vulgaris].
    Kong W; Wang Y; Yang H; Xi Y; Han R; Niu S
    Wei Sheng Wu Xue Bao; 2015 Mar; 55(3):299-310. PubMed ID: 26065272
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Augmenting the expression of accD and rbcL genes using optimized iron concentration to achieve higher biomass and biodiesel in Chlorella vulgaris.
    Khamoushi A; Tafakori V; Zahed MA; Gayglou SE; Angaji SA
    Biotechnol Lett; 2020 Dec; 42(12):2631-2641. PubMed ID: 32720070
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nitrate concentration-shift cultivation to enhance protein content of heterotrophic microalga Chlorella vulgaris: Over-compensation strategy.
    Xie T; Xia Y; Zeng Y; Li X; Zhang Y
    Bioresour Technol; 2017 Jun; 233():247-255. PubMed ID: 28285215
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced performance of the microalga Chlorella sorokiniana remotely induced by the plant growth-promoting bacteria Azospirillum brasilense and Bacillus pumilus.
    Amavizca E; Bashan Y; Ryu CM; Farag MA; Bebout BM; de-Bashan LE
    Sci Rep; 2017 Feb; 7():41310. PubMed ID: 28145473
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reorganization of Azospirillum brasilense cell membrane is mediated by lipid composition adjustment to maintain optimal fluidity during water deficit.
    Cesari AB; Paulucci NS; Biasutti MA; Reguera YB; Gallarato LA; Kilmurray C; Dardanelli MS
    J Appl Microbiol; 2016 Jan; 120(1):185-94. PubMed ID: 26535566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CELL-CELL INTERACTION IN THE EUKARYOTE-PROKARYOTE MODEL OF THE MICROALGAE CHLORELLA VULGARIS AND THE BACTERIUM AZOSPIRILLUM BRASILENSE IMMOBILIZED IN POLYMER BEADS(1).
    de-Bashan LE; Schmid M; Rothballer M; Hartmann A; Bashan Y
    J Phycol; 2011 Dec; 47(6):1350-9. PubMed ID: 27020359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.