These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 25129746)
1. Aqueous counter collision using paired water jets as a novel means of preparing bio-nanofibers. Kondo T; Kose R; Naito H; Kasai W Carbohydr Polym; 2014 Nov; 112():284-90. PubMed ID: 25129746 [TBL] [Abstract][Full Text] [Related]
2. "Nanocellulose" as a single nanofiber prepared from pellicle secreted by Gluconacetobacter xylinus using aqueous counter collision. Kose R; Mitani I; Kasai W; Kondo T Biomacromolecules; 2011 Mar; 12(3):716-20. PubMed ID: 21314117 [TBL] [Abstract][Full Text] [Related]
3. A uniaxially oriented nanofibrous cellulose scaffold from pellicles produced by Gluconacetobacter xylinus in dissolved oxygen culture. Nagashima A; Tsuji T; Kondo T Carbohydr Polym; 2016 Jan; 135():215-24. PubMed ID: 26453871 [TBL] [Abstract][Full Text] [Related]
4. Autonomous bottom-up fabrication of three-dimensional nano/microcellulose honeycomb structures, directed by bacterial nanobuilder. Kondo T; Kasai W J Biosci Bioeng; 2014 Oct; 118(4):482-7. PubMed ID: 24799259 [TBL] [Abstract][Full Text] [Related]
5. Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles. Xiao S; Gao R; Lu Y; Li J; Sun Q Carbohydr Polym; 2015 Mar; 119():202-9. PubMed ID: 25563961 [TBL] [Abstract][Full Text] [Related]
6. Regulated patterns of bacterial movements based on their secreted cellulose nanofibers interacting interfacially with ordered chitin templates. Kondo T; Kasai W; Nojiri M; Hishikawa Y; Togawa E; Romanovicz D; Brown RM J Biosci Bioeng; 2012 Jul; 114(1):113-20. PubMed ID: 22578597 [TBL] [Abstract][Full Text] [Related]
7. Nano-sized fibrils dispersed from bacterial cellulose grafted with chitosan. Liu X; Wang Y; Cheng Z; Sheng J; Yang R Carbohydr Polym; 2019 Jun; 214():311-316. PubMed ID: 30926002 [TBL] [Abstract][Full Text] [Related]
8. Bacterial cellulose/TiO2 hybrid nanofibers prepared by the surface hydrolysis method with molecular precision. Sun D; Yang J; Wang X Nanoscale; 2010 Feb; 2(2):287-92. PubMed ID: 20644807 [TBL] [Abstract][Full Text] [Related]
9. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Iwamoto S; Isogai A; Iwata T Biomacromolecules; 2011 Mar; 12(3):831-6. PubMed ID: 21302950 [TBL] [Abstract][Full Text] [Related]
10. Study of nano-fiber cellulose production by Glucanacetobacter xylinum ATCC 10245. Norouzian D; Farhangi A; Tolooei S; Saffari Z; Mehrabi MR; Chiani M; Ghassemi S; Farahnak M; Akbarzadeh A Pak J Biol Sci; 2011 Aug; 14(15):780-4. PubMed ID: 22303584 [TBL] [Abstract][Full Text] [Related]
11. Lignin-based electrospun nanofibers reinforced with cellulose nanocrystals. Ago M; Okajima K; Jakes JE; Park S; Rojas OJ Biomacromolecules; 2012 Mar; 13(3):918-26. PubMed ID: 22283444 [TBL] [Abstract][Full Text] [Related]
12. Preparation and characterization of bionanocomposite fiber based on cellulose and nano-SiO2 using ionic liquid. Song HZ; Luo ZQ; Wang CZ; Hao XF; Gao JG Carbohydr Polym; 2013 Oct; 98(1):161-7. PubMed ID: 23987330 [TBL] [Abstract][Full Text] [Related]
13. Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Benhamou K; Dufresne A; Magnin A; Mortha G; Kaddami H Carbohydr Polym; 2014 Jan; 99():74-83. PubMed ID: 24274481 [TBL] [Abstract][Full Text] [Related]
14. Early growth of nano-sized calcium phosphate on phosphorylated bacterial cellulose nanofibers. Wan YZ; Gao C; Luo HL; He F; Liang H; Li XL; Wang YL J Nanosci Nanotechnol; 2009 Nov; 9(11):6494-500. PubMed ID: 19908555 [TBL] [Abstract][Full Text] [Related]
15. Co-electrospun poly(ɛ-caprolactone)/cellulose nanofibers-fabrication and characterization. Ahmed F; Saleemi S; Khatri Z; Abro MI; Kim IS Carbohydr Polym; 2015 Jan; 115():388-93. PubMed ID: 25439909 [TBL] [Abstract][Full Text] [Related]
17. Development of completely dispersed cellulose nanofibers. Isogai A Proc Jpn Acad Ser B Phys Biol Sci; 2018; 94(4):161-179. PubMed ID: 29643272 [TBL] [Abstract][Full Text] [Related]
18. Improved water dispersion and bioavailability of coenzyme Q10 by bacterial cellulose nanofibers. Li Y; Yang Q; Liu B; Zhang Q; Liu Y; Zhao X; Li S Carbohydr Polym; 2022 Jan; 276():118788. PubMed ID: 34823798 [TBL] [Abstract][Full Text] [Related]
19. Reversible immobilization of urease by using bacterial cellulose nanofibers. Akduman B; Uygun M; Coban EP; Uygun DA; Bıyık H; Akgöl S Appl Biochem Biotechnol; 2013 Dec; 171(8):2285-94. PubMed ID: 24068477 [TBL] [Abstract][Full Text] [Related]
20. Facile isolation of cellulose nanofibers from water hyacinth using water-based mechanical defibrillation: Insights into morphological, physical, and rheological properties. Pakutsah K; Aht-Ong D Int J Biol Macromol; 2020 Feb; 145():64-76. PubMed ID: 31874270 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]