These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

709 related articles for article (PubMed ID: 25129887)

  • 21. High-resolution DNA-binding specificity analysis of yeast transcription factors.
    Zhu C; Byers KJ; McCord RP; Shi Z; Berger MF; Newburger DE; Saulrieta K; Smith Z; Shah MV; Radhakrishnan M; Philippakis AA; Hu Y; De Masi F; Pacek M; Rolfs A; Murthy T; Labaer J; Bulyk ML
    Genome Res; 2009 Apr; 19(4):556-66. PubMed ID: 19158363
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A computational "genome walk" technique to identify regulatory interactions in gene networks.
    Wagner A
    Pac Symp Biocomput; 1998; ():264-78. PubMed ID: 9697188
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility.
    Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J
    BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deciphering the genome's regulatory code: the many languages of DNA.
    Rister J; Desplan C
    Bioessays; 2010 May; 32(5):381-4. PubMed ID: 20394065
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stability selection for regression-based models of transcription factor-DNA binding specificity.
    Mordelet F; Horton J; Hartemink AJ; Engelhardt BE; Gordân R
    Bioinformatics; 2013 Jul; 29(13):i117-25. PubMed ID: 23812975
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generating specificity in genome regulation through transcription factor sensitivity to chromatin.
    Isbel L; Grand RS; Schübeler D
    Nat Rev Genet; 2022 Dec; 23(12):728-740. PubMed ID: 35831531
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A conserved role for transcription factor sumoylation in binding-site selection.
    Rosonina E
    Curr Genet; 2019 Dec; 65(6):1307-1312. PubMed ID: 31093693
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Paired yeast one-hybrid assays to detect DNA-binding cooperativity and antagonism across transcription factors.
    Berenson A; Lane R; Soto-Ugaldi LF; Patel M; Ciausu C; Li Z; Chen Y; Shah S; Santoso C; Liu X; Spirohn K; Hao T; Hill DE; Vidal M; Fuxman Bass JI
    Nat Commun; 2023 Oct; 14(1):6570. PubMed ID: 37853017
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Most of the tight positional conservation of transcription factor binding sites near the transcription start site reflects their co-localization within regulatory modules.
    Acevedo-Luna N; Mariño-Ramírez L; Halbert A; Hansen U; Landsman D; Spouge JL
    BMC Bioinformatics; 2016 Nov; 17(1):479. PubMed ID: 27871221
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors.
    Wang J; Zhuang J; Iyer S; Lin X; Whitfield TW; Greven MC; Pierce BG; Dong X; Kundaje A; Cheng Y; Rando OJ; Birney E; Myers RM; Noble WS; Snyder M; Weng Z
    Genome Res; 2012 Sep; 22(9):1798-812. PubMed ID: 22955990
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relative avidity, specificity, and sensitivity of transcription factor-DNA binding in genome-scale experiments.
    Kuznetsov VA
    Methods Mol Biol; 2009; 563():15-50. PubMed ID: 19597778
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biophysical fitness landscapes for transcription factor binding sites.
    Haldane A; Manhart M; Morozov AV
    PLoS Comput Biol; 2014 Jul; 10(7):e1003683. PubMed ID: 25010228
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low-Affinity Binding Sites and the Transcription Factor Specificity Paradox in Eukaryotes.
    Kribelbauer JF; Rastogi C; Bussemaker HJ; Mann RS
    Annu Rev Cell Dev Biol; 2019 Oct; 35():357-379. PubMed ID: 31283382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Competition between DNA methylation and transcription factors determines binding of NRF1.
    Domcke S; Bardet AF; Adrian Ginno P; Hartl D; Burger L; Schübeler D
    Nature; 2015 Dec; 528(7583):575-9. PubMed ID: 26675734
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features.
    Kumar S; Bucher P
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):4. PubMed ID: 26818008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Double-stranded DNA microarray: principal, techniques and applications].
    Pan Y; Wang JK
    Yi Chuan; 2013 Mar; 35(3):287-306. PubMed ID: 23575535
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.
    Tsai ZT; Shiu SH; Tsai HK
    PLoS Comput Biol; 2015 Aug; 11(8):e1004418. PubMed ID: 26291518
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The architecture of binding cooperativity between densely bound transcription factors.
    Lupo O; Kumar DK; Livne R; Chappleboim M; Levy I; Barkai N
    Cell Syst; 2023 Sep; 14(9):732-745.e5. PubMed ID: 37527656
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cooperative binding of transcription factors in the human genome.
    Nie Y; Shu C; Sun X
    Genomics; 2020 Sep; 112(5):3427-3434. PubMed ID: 32574834
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Context-Dependent Gene Regulation by Homeodomain Transcription Factor Complexes Revealed by Shape-Readout Deficient Proteins.
    Kribelbauer JF; Loker RE; Feng S; Rastogi C; Abe N; Rube HT; Bussemaker HJ; Mann RS
    Mol Cell; 2020 Apr; 78(1):152-167.e11. PubMed ID: 32053778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.