These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25130277)

  • 1. Abiotic stress tolerance and competition-related traits underlie phylogenetic clustering in soil bacterial communities.
    Goberna M; Navarro-Cano JA; Valiente-Banuet A; García C; Verdú M
    Ecol Lett; 2014 Oct; 17(10):1191-201. PubMed ID: 25130277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competition and habitat filtering jointly explain phylogenetic structure of soil bacterial communities across elevational gradients.
    Zhang Q; Goberna M; Liu Y; Cui M; Yang H; Sun Q; Insam H; Zhou J
    Environ Microbiol; 2018 Jul; 20(7):2386-2396. PubMed ID: 29687609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fire modifies the phylogenetic structure of soil bacterial co-occurrence networks.
    Pérez-Valera E; Goberna M; Faust K; Raes J; García C; Verdú M
    Environ Microbiol; 2017 Jan; 19(1):317-327. PubMed ID: 27871135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly rules in a resource gradient: Competition and abiotic filtering determine the structuring of plant communities in stressful environments.
    Menezes BS; Martins FR; Dantas Carvalho EC; Souza BC; Silveira AP; Loiola MIB; Araújo FS
    PLoS One; 2020; 15(3):e0230097. PubMed ID: 32168330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Community composition and cellulase activity of cellulolytic bacteria from forest soils planted with broad-leaved deciduous and evergreen trees.
    Yang JK; Zhang JJ; Yu HY; Cheng JW; Miao LH
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1449-58. PubMed ID: 23893311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial community composition in soils of Northern Victoria Land, Antarctica.
    Niederberger TD; McDonald IR; Hacker AL; Soo RM; Barrett JE; Wall DH; Cary SC
    Environ Microbiol; 2008 Jul; 10(7):1713-24. PubMed ID: 18373679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporating phylogenetic metrics to microbial co-occurrence networks based on amplicon sequences to discern community assembly processes.
    Goberna M; Montesinos-Navarro A; Valiente-Banuet A; Colin Y; Gómez-Fernández A; Donat S; Navarro-Cano JA; Verdú M
    Mol Ecol Resour; 2019 Nov; 19(6):1552-1564. PubMed ID: 31482665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opposing phylogenetic diversity gradients of plant and soil bacterial communities.
    Goberna M; Navarro-Cano JA; Verdú M
    Proc Biol Sci; 2016 Feb; 283(1825):20153003. PubMed ID: 26888037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Why are some microbes more ubiquitous than others? Predicting the habitat breadth of soil bacteria.
    Barberán A; Ramirez KS; Leff JW; Bradford MA; Wall DH; Fierer N
    Ecol Lett; 2014 Jul; 17(7):794-802. PubMed ID: 24751288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial population index and community structure in saline-alkaline soil using gene targeted metagenomics.
    Keshri J; Mishra A; Jha B
    Microbiol Res; 2013 Mar; 168(3):165-73. PubMed ID: 23083746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Community constitute and phylogenetic analysis on soil uncultured microorganism].
    Chen H; Tang X; Lin J; Zhang B; Ren D
    Wei Sheng Wu Xue Bao; 2002 Aug; 42(4):478-83. PubMed ID: 12557556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes.
    Chu H; Fierer N; Lauber CL; Caporaso JG; Knight R; Grogan P
    Environ Microbiol; 2010 Nov; 12(11):2998-3006. PubMed ID: 20561020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Analysis of soil bacterial diversity by using the 16S rRNA gene library].
    Liu W; Mao Z; Yang Y; Xie B
    Wei Sheng Wu Xue Bao; 2008 Oct; 48(10):1344-50. PubMed ID: 19160815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-term dynamics of culturable bacteria in a soil amended with biotransformed dry olive residue.
    Siles JA; Pascual J; González-Menéndez V; Sampedro I; García-Romera I; Bills GF
    Syst Appl Microbiol; 2014 Mar; 37(2):113-20. PubMed ID: 24268790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opposing effects of competitive exclusion on the phylogenetic structure of communities.
    Mayfield MM; Levine JM
    Ecol Lett; 2010 Sep; 13(9):1085-93. PubMed ID: 20576030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenetic clustering and overdispersion in bacterial communities.
    Horner-Devine MC; Bohannan BJ
    Ecology; 2006 Jul; 87(7 Suppl):S100-8. PubMed ID: 16922306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 16S rRNA gene analyses of bacterial community structures in the soils of evergreen broad-leaved forests in south-west China.
    Chan OC; Yang X; Fu Y; Feng Z; Sha L; Casper P; Zou X
    FEMS Microbiol Ecol; 2006 Nov; 58(2):247-59. PubMed ID: 17064266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of nutrient deposition on bacterial communities in Arctic tundra soil.
    Campbell BJ; Polson SW; Hanson TE; Mack MC; Schuur EA
    Environ Microbiol; 2010 Jul; 12(7):1842-54. PubMed ID: 20236166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria.
    Chanal A; Chapon V; Benzerara K; Barakat M; Christen R; Achouak W; Barras F; Heulin T
    Environ Microbiol; 2006 Mar; 8(3):514-25. PubMed ID: 16478457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of cellulolytic bacteria in soil by stable isotope probing.
    Haichar FZ; Achouak W; Christen R; Heulin T; Marol C; Marais MF; Mougel C; Ranjard L; Balesdent J; Berge O
    Environ Microbiol; 2007 Mar; 9(3):625-34. PubMed ID: 17298363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.