These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 25130371)
21. Exploring microRNA Biomarker for Amyotrophic Lateral Sclerosis. Taguchi YH; Wang H Int J Mol Sci; 2018 Apr; 19(5):. PubMed ID: 29710810 [TBL] [Abstract][Full Text] [Related]
22. YKL40 in sporadic amyotrophic lateral sclerosis: cerebrospinal fluid levels as a prognosis marker of disease progression. Andrés-Benito P; Domínguez R; Colomina MJ; Llorens F; Povedano M; Ferrer I Aging (Albany NY); 2018 Sep; 10(9):2367-2382. PubMed ID: 30215603 [TBL] [Abstract][Full Text] [Related]
23. Transglutaminase activity in serum and cerebrospinal fluid in sporadic amyotrophic lateral sclerosis: a possible use as an indicator of extent of the motor neuron loss. Fujita K; Honda M; Hayashi R; Ogawa K; Ando M; Yamauchi M; Nagata Y J Neurol Sci; 1998 Jun; 158(1):53-7. PubMed ID: 9667778 [TBL] [Abstract][Full Text] [Related]
24. Diagnostic Circulating miRNAs in Sporadic Amyotrophic Lateral Sclerosis. Panio A; Cava C; D'Antona S; Bertoli G; Porro D Front Med (Lausanne); 2022; 9():861960. PubMed ID: 35602517 [TBL] [Abstract][Full Text] [Related]
26. Insights into the identification of a molecular signature for amyotrophic lateral sclerosis exploiting integrated microRNA profiling of iPSC-derived motor neurons and exosomes. Rizzuti M; Melzi V; Gagliardi D; Resnati D; Meneri M; Dioni L; Masrori P; Hersmus N; Poesen K; Locatelli M; Biella F; Silipigni R; Bollati V; Bresolin N; Comi GP; Van Damme P; Nizzardo M; Corti S Cell Mol Life Sci; 2022 Mar; 79(3):189. PubMed ID: 35286466 [TBL] [Abstract][Full Text] [Related]
27. Serum miRNAs miR-206, 143-3p and 374b-5p as potential biomarkers for amyotrophic lateral sclerosis (ALS). Waller R; Goodall EF; Milo M; Cooper-Knock J; Da Costa M; Hobson E; Kazoka M; Wollff H; Heath PR; Shaw PJ; Kirby J Neurobiol Aging; 2017 Jul; 55():123-131. PubMed ID: 28454844 [TBL] [Abstract][Full Text] [Related]
28. Expression of microRNAs in human post-mortem amyotrophic lateral sclerosis spinal cords provides insight into disease mechanisms. Figueroa-Romero C; Hur J; Lunn JS; Paez-Colasante X; Bender DE; Yung R; Sakowski SA; Feldman EL Mol Cell Neurosci; 2016 Mar; 71():34-45. PubMed ID: 26704906 [TBL] [Abstract][Full Text] [Related]
29. Discrete mitochondrial aberrations in the spinal cord of sporadic ALS patients. Delic V; Kurien C; Cruz J; Zivkovic S; Barretta J; Thomson A; Hennessey D; Joseph J; Ehrhart J; Willing AE; Bradshaw P; Garbuzova-Davis S J Neurosci Res; 2018 Aug; 96(8):1353-1366. PubMed ID: 29732581 [TBL] [Abstract][Full Text] [Related]
31. Wide-Ranging Analysis of MicroRNA Profiles in Sporadic Amyotrophic Lateral Sclerosis Using Next-Generation Sequencing. De Felice B; Manfellotto F; Fiorentino G; Annunziata A; Biffali E; Pannone R; Federico A Front Genet; 2018; 9():310. PubMed ID: 30154826 [TBL] [Abstract][Full Text] [Related]
32. MicroRNAs and HDAC4 protein expression in the skeletal muscle of ALS patients. Pegoraro V; Marozzo R; Angelini C Clin Neuropathol; 2020; 39(3):105-114. PubMed ID: 32000889 [TBL] [Abstract][Full Text] [Related]
33. IL-17A is increased in the serum and in spinal cord CD8 and mast cells of ALS patients. Fiala M; Chattopadhay M; La Cava A; Tse E; Liu G; Lourenco E; Eskin A; Liu PT; Magpantay L; Tse S; Mahanian M; Weitzman R; Tong J; Nguyen C; Cho T; Koo P; Sayre J; Martinez-Maza O; Rosenthal MJ; Wiedau-Pazos M J Neuroinflammation; 2010 Nov; 7():76. PubMed ID: 21062492 [TBL] [Abstract][Full Text] [Related]
34. Soluble iron accumulation induces microglial glutamate release in the spinal cord of sporadic amyotrophic lateral sclerosis. Niida-Kawaguchi M; Kakita A; Noguchi N; Kazama M; Masui K; Kato Y; Yamamoto T; Sawada T; Kitagawa K; Watabe K; Shibata N Neuropathology; 2020 Apr; 40(2):152-166. PubMed ID: 31883180 [TBL] [Abstract][Full Text] [Related]
35. Phosphorylated Smad2/3 immunoreactivity in sporadic and familial amyotrophic lateral sclerosis and its mouse model. Nakamura M; Ito H; Wate R; Nakano S; Hirano A; Kusaka H Acta Neuropathol; 2008 Mar; 115(3):327-34. PubMed ID: 18210139 [TBL] [Abstract][Full Text] [Related]
36. Wild-type Cu/Zn-superoxide dismutase is misfolded in cerebrospinal fluid of sporadic amyotrophic lateral sclerosis. Tokuda E; Takei YI; Ohara S; Fujiwara N; Hozumi I; Furukawa Y Mol Neurodegener; 2019 Nov; 14(1):42. PubMed ID: 31744522 [TBL] [Abstract][Full Text] [Related]
37. Expression of vesicle-associated membrane-protein-associated protein B cleavage products in peripheral blood leukocytes and cerebrospinal fluid of patients with sporadic amyotrophic lateral sclerosis. Deidda I; Galizzi G; Passantino R; Cascio C; Russo D; Colletti T; La Bella V; Guarneri P Eur J Neurol; 2014 Mar; 21(3):478-85. PubMed ID: 24372953 [TBL] [Abstract][Full Text] [Related]
38. Identification of a circulating miRNA signature in extracellular vesicles collected from amyotrophic lateral sclerosis patients. Saucier D; Wajnberg G; Roy J; Beauregard AP; Chacko S; Crapoulet N; Fournier S; Ghosh A; Lewis SM; Marrero A; O'Connell C; Ouellette RJ; Morin PJ Brain Res; 2019 Apr; 1708():100-108. PubMed ID: 30552897 [TBL] [Abstract][Full Text] [Related]
39. Increased expression of connective tissue growth factor in amyotrophic lateral sclerosis human spinal cord. Spliet WG; Aronica E; Ramkema M; Aten J; Troost D Acta Neuropathol; 2003 Nov; 106(5):449-57. PubMed ID: 12915949 [TBL] [Abstract][Full Text] [Related]
40. The expression discrepancy and characteristics of long non-coding RNAs in peripheral blood leukocytes from amyotrophic lateral sclerosis patients. Yu Y; Pang D; Li C; Gu X; Chen Y; Ou R; Wei Q; Shang H Mol Neurobiol; 2022 Jun; 59(6):3678-3689. PubMed ID: 35364800 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]