These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25130589)

  • 1. Stress modulation of cellular metabolic sensors: interaction of stress from temperature and rainfall on the intertidal limpet Cellana toreuma.
    Dong YW; Han GD; Huang XW
    Mol Ecol; 2014 Sep; 23(18):4541-54. PubMed ID: 25130589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic energy sensors (AMPK and SIRT1), protein carbonylation and cardiac failure as biomarkers of thermal stress in an intertidal limpet: linking energetic allocation with environmental temperature during aerial emersion.
    Han GD; Zhang S; Marshall DJ; Ke CH; Dong YW
    J Exp Biol; 2013 Sep; 216(Pt 17):3273-82. PubMed ID: 23685977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature relations of aerial and aquatic physiological performance in a mid-intertidal limpet Cellana toreuma: adaptation to rapid changes in thermal stress during emersion.
    Huang X; Wang T; Ye Z; Han G; Dong Y
    Integr Zool; 2015 Jan; 10(1):159-70. PubMed ID: 24979525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal patterns of cardiac performance and genes encoding heat shock proteins and metabolic sensors of an intertidal limpet Cellana toreuma during sublethal heat stress.
    Zhang S; Han GD; Dong YW
    J Therm Biol; 2014 Apr; 41():31-7. PubMed ID: 24679969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exposure to solar radiation drives organismal vulnerability to climate: Evidence from an intertidal limpet.
    Chapperon C; Volkenborn N; Clavier J; Séité S; Seabra R; Lima FP
    J Therm Biol; 2016 Apr; 57():92-100. PubMed ID: 27033044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic metabolism and thermal tolerance: The importance of opine pathways on survival of a gastropod after cardiac dysfunction.
    Han G; Zhang S; Dong Y
    Integr Zool; 2017 Sep; 12(5):361-370. PubMed ID: 27595556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal physiology of the fingered limpet Lottia digitalis under emersion and immersion.
    Bjelde BE; Todgham AE
    J Exp Biol; 2013 Aug; 216(Pt 15):2858-69. PubMed ID: 23580728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat-shock protein 70 (Hsp70) expression in four limpets of the genus Lottia: interspecific variation in constitutive and inducible synthesis correlates with in situ exposure to heat stress.
    Dong Y; Miller LP; Sanders JG; Somero GN
    Biol Bull; 2008 Oct; 215(2):173-81. PubMed ID: 18840778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variation in the heat shock response and its implication for predicting the effect of global climate change on species' biogeographical distribution ranges and metabolic costs.
    Tomanek L
    J Exp Biol; 2010 Mar; 213(6):971-9. PubMed ID: 20190122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptomic response of the intertidal limpet Patella vulgata to temperature extremes.
    Moreira C; Stillman JH; Lima FP; Xavier R; Seabra R; Gomes F; Veríssimo A; Silva SM
    J Therm Biol; 2021 Oct; 101():103096. PubMed ID: 34879914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat-shock response and antioxidant defense during air exposure in Patagonian shallow-water limpets from different climatic habitats.
    Pöhlmann K; Koenigstein S; Alter K; Abele D; Held C
    Cell Stress Chaperones; 2011 Nov; 16(6):621-32. PubMed ID: 21671159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microhabitat-specific diurnal metabolomic responses of the intertidal limpet
    Sun YX; Hu LS; Dong YW
    iScience; 2023 Mar; 26(3):106128. PubMed ID: 36852273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ecological comparison of cellular stress responses among populations - normalizing RT-qPCR values to investigate differential environmental adaptations.
    Koenigstein S; Pöhlmann K; Held C; Abele D
    BMC Ecol; 2013 May; 13():21. PubMed ID: 23680017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cascading effects from survival to physiological activities, and gene expression of heat shock protein 90 on the abalone Haliotis discus hannai responding to continuous thermal stress.
    Park K; Lee JS; Kang JC; Kim JW; Kwak IS
    Fish Shellfish Immunol; 2015 Feb; 42(2):233-40. PubMed ID: 25449369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of stochastic thermal environments in modulating the thermal physiology of an intertidal limpet,
    Drake MJ; Miller NA; Todgham AE
    J Exp Biol; 2017 Sep; 220(Pt 17):3072-3083. PubMed ID: 28855321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of AMP-activated protein kinase in response to temperature elevation shows seasonal variation in the zebra mussel, Dreissena polymorpha.
    Jost JA; Keshwani SS; Abou-Hanna JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Apr; 182():75-83. PubMed ID: 25498351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surviving hot summer: Roles of phenotypic plasticity of intertidal mobile species considering microhabitat environmental heterogeneity.
    Sun YX; Hu LS; Dong YW
    J Therm Biol; 2023 Oct; 117():103686. PubMed ID: 37669600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hot limpets: predicting body temperature in a conductance-mediated thermal system.
    Denny MW; Harley CD
    J Exp Biol; 2006 Jul; 209(Pt 13):2409-19. PubMed ID: 16788024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergy of environmental variables alters the thermal window and heat shock response: an experimental test with the crab Pachygrapsus marmoratus.
    Madeira D; Narciso L; Diniz MS; Vinagre C
    Mar Environ Res; 2014 Jul; 98():21-8. PubMed ID: 24836643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of short-term elevated temperature stress on winter-acclimated individuals of the marine gastropod Crepidula fornicata.
    Pechenik JA; Chaparro OR; Lazarus ZM; Tellado GV; Ostapovich EM; Clark D
    Mar Environ Res; 2020 Dec; 162():105180. PubMed ID: 33126112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.