These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 25130624)
1. Biogeochemical environments of streambed-sediment pore waters with and without arsenic enrichment in a sedimentary rock terrain, New Jersey Piedmont, USA. Mumford AC; Barringer JL; Reilly PA; Eberl DD; Blum AE; Young LY Sci Total Environ; 2015 Feb; 505():1350-60. PubMed ID: 25130624 [TBL] [Abstract][Full Text] [Related]
2. Pathways for arsenic from sediments to groundwater to streams: biogeochemical processes in the Inner Coastal Plain, New Jersey, USA. Barringer JL; Mumford A; Young LY; Reilly PA; Bonin JL; Rosman R Water Res; 2010 Nov; 44(19):5532-44. PubMed ID: 20580401 [TBL] [Abstract][Full Text] [Related]
3. Microbial transformations of arsenic: mobilization from glauconitic sediments to water. Mumford AC; Barringer JL; Benzel WM; Reilly PA; Young LY Water Res; 2012 Jun; 46(9):2859-68. PubMed ID: 22494492 [TBL] [Abstract][Full Text] [Related]
4. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers. Rango T; Vengosh A; Dwyer G; Bianchini G Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878 [TBL] [Abstract][Full Text] [Related]
5. Sources and temporal dynamics of arsenic in a New Jersey watershed, USA. Barringer JL; Bonin JL; Deluca MJ; Romagna T; Cenno K; Alebus M; Kratzer T; Hirst B Sci Total Environ; 2007 Jun; 379(1):56-74. PubMed ID: 17448524 [TBL] [Abstract][Full Text] [Related]
6. Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates - evidence from the Chaco-Pampean plain (Argentina). Nicolli HB; Bundschuh J; García JW; Falcón CM; Jean JS Water Res; 2010 Nov; 44(19):5589-604. PubMed ID: 21035830 [TBL] [Abstract][Full Text] [Related]
7. Geogenic arsenic and other trace elements in the shallow hydrogeologic system of Southern Poopó Basin, Bolivian Altiplano. Ormachea Muñoz M; Wern H; Johnsson F; Bhattacharya P; Sracek O; Thunvik R; Quintanilla J; Bundschuh J J Hazard Mater; 2013 Nov; 262():924-40. PubMed ID: 24091126 [TBL] [Abstract][Full Text] [Related]
8. Effects of redox conditions on the control of arsenic mobility in shallow alluvial aquifers on the Venetian Plain (Italy). Carraro A; Fabbri P; Giaretta A; Peruzzo L; Tateo F; Tellini F Sci Total Environ; 2015 Nov; 532():581-94. PubMed ID: 26115337 [TBL] [Abstract][Full Text] [Related]
9. The occurrence and dominant controls on arsenic in the Newark and Gettysburg Basins. Blake JM; Peters SC Sci Total Environ; 2015 Feb; 505():1340-9. PubMed ID: 24565223 [TBL] [Abstract][Full Text] [Related]
10. The influence of metamorphic grade on arsenic in metasedimentary bedrock aquifers: a case study from Western New England, USA. Ryan PC; West DP; Hattori K; Studwell S; Allen DN; Kim J Sci Total Environ; 2015 Feb; 505():1320-30. PubMed ID: 24867678 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of hexavalent chromium in sediment pore water of the Hackensack River, New Jersey, USA. Driscoll SK; McArdle ME; Plumlee MH; Proctor D Environ Toxicol Chem; 2010 Mar; 29(3):617-20. PubMed ID: 20821486 [TBL] [Abstract][Full Text] [Related]
12. Effect of microbially mediated iron mineral transformation on temporal variation of arsenic in the Pleistocene aquifers of the central Yangtze River basin. Deng Y; Zheng T; Wang Y; Liu L; Jiang H; Ma T Sci Total Environ; 2018 Apr; 619-620():1247-1258. PubMed ID: 29734603 [TBL] [Abstract][Full Text] [Related]
13. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China. Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934 [TBL] [Abstract][Full Text] [Related]
14. Arsenic release from shallow aquifers of the Hetao basin, Inner Mongolia: evidence from bacterial community in aquifer sediments and groundwater. Li Y; Guo H; Hao C Ecotoxicology; 2014 Dec; 23(10):1900-14. PubMed ID: 25139033 [TBL] [Abstract][Full Text] [Related]
15. Arsenic mobilization in the aquifers of three physiographic settings of West Bengal, India: understanding geogenic and anthropogenic influences. Bhowmick S; Nath B; Halder D; Biswas A; Majumder S; Mondal P; Chakraborty S; Nriagu J; Bhattacharya P; Iglesias M; Roman-Ross G; Guha Mazumder D; Bundschuh J; Chatterjee D J Hazard Mater; 2013 Nov; 262():915-23. PubMed ID: 22999019 [TBL] [Abstract][Full Text] [Related]
16. Sediment color tool for targeting arsenic-safe aquifers for the installation of shallow drinking water tubewells. Hossain M; Bhattacharya P; Frape SK; Jacks G; Islam MM; Rahman MM; von Brömssen M; Hasan MA; Ahmed KM Sci Total Environ; 2014 Sep; 493():615-25. PubMed ID: 24984232 [TBL] [Abstract][Full Text] [Related]
17. Arsenic mobilization in aquifers of the southwest Songnen basin, P.R. China: evidences from chemical and isotopic characteristics. Guo H; Zhang D; Wen D; Wu Y; Ni P; Jiang Y; Guo Q; Li F; Zheng H; Zhou Y Sci Total Environ; 2014 Aug; 490():590-602. PubMed ID: 24880548 [TBL] [Abstract][Full Text] [Related]
18. Arsenic attenuation by oxidized aquifer sediments in Bangladesh. Stollenwerk KG; Breit GN; Welch AH; Yount JC; Whitney JW; Foster AL; Uddin MN; Majumder RK; Ahmed N Sci Total Environ; 2007 Jul; 379(2-3):133-50. PubMed ID: 17250876 [TBL] [Abstract][Full Text] [Related]
19. Distribution and variability of redox zones controlling spatial variability of arsenic in the Mississippi River Valley alluvial aquifer, southeastern Arkansas. Sharif MU; Davis RK; Steele KF; Kim B; Hays PD; Kresse TM; Fazio JA J Contam Hydrol; 2008 Jul; 99(1-4):49-67. PubMed ID: 18486990 [TBL] [Abstract][Full Text] [Related]
20. Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Polizzotto ML; Kocar BD; Benner SG; Sampson M; Fendorf S Nature; 2008 Jul; 454(7203):505-8. PubMed ID: 18650922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]