These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 25130917)
21. Effect of laser-induced temperature field on the characteristics of laser-sintered silver nanoparticle ink. Lee DG; Kim DK; Moon YJ; Moon SJ Nanotechnology; 2013 Jul; 24(26):265702. PubMed ID: 23732285 [TBL] [Abstract][Full Text] [Related]
22. A high-performance, flexible and robust metal nanotrough-embedded transparent conducting film for wearable touch screen panels. Im HG; An BW; Jin J; Jang J; Park YG; Park JU; Bae BS Nanoscale; 2016 Feb; 8(7):3916-22. PubMed ID: 26866678 [TBL] [Abstract][Full Text] [Related]
23. Effectiveness of Oxygen during Sintering of Silver Thin Films Derived by Nanoparticle Ink. Feng F; Hong H; Gao X; Ren T; Ma Y; Feng P Nanomaterials (Basel); 2022 Jun; 12(11):. PubMed ID: 35683763 [TBL] [Abstract][Full Text] [Related]
24. Shear-Assisted Laser Transfer of Metal Nanoparticle Ink to an Elastomer Substrate. Shin W; Lim J; Lee Y; Park S; Kim H; Cho H; Shin J; Yoon Y; Lee H; Kim HJ; Han S; Ko SH; Hong S Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30544907 [TBL] [Abstract][Full Text] [Related]
25. A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique. Joo SJ; Park SH; Moon CJ; Kim HS ACS Appl Mater Interfaces; 2015 Mar; 7(10):5674-84. PubMed ID: 25714508 [TBL] [Abstract][Full Text] [Related]
26. Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications. Kwon J; Cho H; Eom H; Lee H; Suh YD; Moon H; Shin J; Hong S; Ko SH ACS Appl Mater Interfaces; 2016 May; 8(18):11575-82. PubMed ID: 27128365 [TBL] [Abstract][Full Text] [Related]
27. Micropatterning of Metal Nanoparticle Ink by Laser-Induced Thermocapillary Flow. Park S; Kwon J; Lim J; Shin W; Lee Y; Lee H; Kim HJ; Han S; Yeo J; Ko SH; Hong S Nanomaterials (Basel); 2018 Aug; 8(9):. PubMed ID: 30135357 [TBL] [Abstract][Full Text] [Related]
28. Laser perforated ultrathin metal films for transparent electrode applications. Theuring M; Steenhoff V; Geissendörfer S; Vehse M; von Maydell K; Agert C Opt Express; 2015 Apr; 23(7):A254-62. PubMed ID: 25968791 [TBL] [Abstract][Full Text] [Related]
29. Selective Light-Induced Patterning of Carbon Nanotube/Silver Nanoparticle Composite To Produce Extremely Flexible Conductive Electrodes. Kim I; Woo K; Zhong Z; Lee E; Kang D; Jeong S; Choi YM; Jang Y; Kwon S; Moon J ACS Appl Mater Interfaces; 2017 Feb; 9(7):6163-6170. PubMed ID: 28146354 [TBL] [Abstract][Full Text] [Related]
30. One-step photonic curing of screen-printed conductive Ni flake electrodes for use in flexible electronics. Altay BN; Turkani VS; Pekarovicova A; Fleming PD; Atashbar MZ; Bolduc M; Cloutier SG Sci Rep; 2021 Feb; 11(1):3393. PubMed ID: 33564062 [TBL] [Abstract][Full Text] [Related]
31. Indium-free, highly transparent, flexible Cu2O/Cu/Cu2O mesh electrodes for flexible touch screen panels. Kim DJ; Kim HJ; Seo KW; Kim KH; Kim TW; Kim HK Sci Rep; 2015 Nov; 5():16838. PubMed ID: 26582471 [TBL] [Abstract][Full Text] [Related]
32. Inkjet-printed all solid-state electrochromic devices based on NiO/WO3 nanoparticle complementary electrodes. Cai G; Darmawan P; Cui M; Chen J; Wang X; Eh AL; Magdassi S; Lee PS Nanoscale; 2016 Jan; 8(1):348-57. PubMed ID: 26610811 [TBL] [Abstract][Full Text] [Related]
33. Effect of Heat Accumulation on Femtosecond Laser Reductive Sintering of Mixed CuO/NiO Nanoparticles. Mizoshiri M; Nishitani K; Hata S Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424197 [TBL] [Abstract][Full Text] [Related]
34. Fully Solution-Processable Fabrication of Multi-Layered Circuits on a Flexible Substrate Using Laser Processing. Ji SY; Choi W; Kim HY; Jeon JW; Cho SH; Chang WS Materials (Basel); 2018 Feb; 11(2):. PubMed ID: 29425144 [TBL] [Abstract][Full Text] [Related]
35. Flexible Heater Fabrication Using Amino Acid-Based Ink and Laser-Direct Writing. Koo S Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557507 [TBL] [Abstract][Full Text] [Related]
36. Microelectrode fabrication by laser direct curing of tiny nanoparticle self-generated from organometallic ink. Kang B; Ko S; Kim J; Yang M Opt Express; 2011 Jan; 19(3):2573-9. PubMed ID: 21369077 [TBL] [Abstract][Full Text] [Related]
37. Adaptive fabrication of a flexible electrode by optically self-selected interfacial adhesion and its application to highly transparent and conductive film. Kang B; Yun J; Kim SG; Yang M Small; 2013 Jun; 9(12):2111-8. PubMed ID: 23335383 [TBL] [Abstract][Full Text] [Related]
38. A Transformative Gold Patterning through Selective Laser Refining of Cyanide. Lim J; Ham J; Lee W; Hwang E; Lee WC; Hong S Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443754 [TBL] [Abstract][Full Text] [Related]
39. Moiré-Free Imperceptible and Flexible Random Metal Grid Electrodes with Large Figure-of-Merit by Photonic Sintering Control of Copper Nanoparticles. Jung J; Cho H; Choi SH; Kim D; Kwon J; Shin J; Hong S; Kim H; Yoon Y; Lee J; Lee D; Suh YD; Ko SH ACS Appl Mater Interfaces; 2019 May; 11(17):15773-15780. PubMed ID: 30990648 [TBL] [Abstract][Full Text] [Related]
40. The exothermic reaction route of a self-heatable conductive ink for rapid processable printed electronics. Shin DY; Han JW; Chun S Nanoscale; 2014 Jan; 6(1):630-7. PubMed ID: 24253416 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]