These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 25131158)

  • 1. Precise determination of the threshold diameter for a single-walled carbon nanotube to collapse.
    He M; Dong J; Zhang K; Ding F; Jiang H; Loiseau A; Lehtonen J; Kauppinen EI
    ACS Nano; 2014 Sep; 8(9):9657-63. PubMed ID: 25131158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Closed-edged graphene nanoribbons from large-diameter collapsed nanotubes.
    Zhang C; Bets K; Lee SS; Sun Z; Mirri F; Colvin VL; Yakobson BI; Tour JM; Hauge RH
    ACS Nano; 2012 Jul; 6(7):6023-32. PubMed ID: 22676224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diameter and chiral angle distribution dependencies on the carbon precursors in surface-grown single-walled carbon nanotubes.
    He M; Jiang H; Kauppinen EI; Lehtonen J
    Nanoscale; 2012 Dec; 4(23):7394-8. PubMed ID: 23085735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled fabrication of intermolecular junctions of single-walled carbon nanotube/graphene nanoribbon.
    Yu F; Zhou H; Zhang Z; Wang G; Yang H; Chen M; Tao L; Tang D; He J; Sun L
    Small; 2013 Jul; 9(14):2405-9. PubMed ID: 23650121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CVD growth of single-walled carbon nanotubes with narrow diameter distribution over Fe/MgO catalyst and their fluorescence spectroscopy.
    Ago H; Imamura S; Okazaki T; Saito T; Yumura M; Tsuji M
    J Phys Chem B; 2005 May; 109(20):10035-41. PubMed ID: 16852214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coronene encapsulation in single-walled carbon nanotubes: stacked columns, peapods, and nanoribbons.
    Anoshkin IV; Talyzin AV; Nasibulin AG; Krasheninnikov AV; Jiang H; Nieminen RM; Kauppinen EI
    Chemphyschem; 2014 Jun; 15(8):1660-5. PubMed ID: 24729536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size engineering of metal nanoparticles to diameter-specified growth of single-walled carbon nanotubes with horizontal alignment on quartz.
    Kim JJ; Lee BJ; Lee SH; Jeong GH
    Nanotechnology; 2012 Mar; 23(10):105607. PubMed ID: 22362281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrathin single-walled carbon nanotube network framed graphene hybrids.
    Wang R; Hong T; Xu YQ
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5233-8. PubMed ID: 25686199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cobalt-filled apoferritin for suspended single-walled carbon nanotube growth with narrow diameter distribution.
    Jeong GH; Yamazaki A; Suzuki S; Yoshimura H; Kobayashi Y; Homma Y
    J Am Chem Soc; 2005 Jun; 127(23):8238-9. PubMed ID: 15941229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of single-walled carbon nanotube growth parameters using alcohol catalytic chemical vapour deposition.
    Unalan HE; Chhowalla M
    Nanotechnology; 2005 Oct; 16(10):2153-63. PubMed ID: 20817989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth.
    Ding F; Rosén A; Bolton K
    J Chem Phys; 2004 Aug; 121(6):2775-9. PubMed ID: 15281881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling the Diameter of Single-Walled Carbon Nanotubes by Improving the Dispersion of the Uniform Catalyst Nanoparticles on Substrate.
    Chen J; Xu X; Zhang L; Huang S
    Nanomicro Lett; 2015; 7(4):353-359. PubMed ID: 30464982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic characterization of the chiral structure of individual single-walled carbon nanotubes and the edge structure of isolated graphene nanoribbons.
    Zhang D; Yang J; Li Y
    Small; 2013 Apr; 9(8):1284-304. PubMed ID: 23529997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of a carbon nanoribbon by spontaneous collapse of a carbon nanotube grown from a γ-Fe nanoparticle via an origami mechanism.
    Kohno H; Komine T; Hasegawa T; Niioka H; Ichikawa S
    Nanoscale; 2013 Jan; 5(2):570-3. PubMed ID: 23196743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rapid synthesis of iron phosphate nanoparticles via surface-mediated spontaneous reaction for the growth of high-yield, single-walled carbon nanotubes.
    Yang HJ; Song HJ; Shin HJ; Choi HC
    Langmuir; 2005 Sep; 21(20):9098-102. PubMed ID: 16171338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct growth of short single-walled carbon nanotubes with narrow-chirality distribution by time-programmed plasma chemical vapor deposition.
    Kato T; Hatakeyama R
    ACS Nano; 2010 Dec; 4(12):7395-400. PubMed ID: 21082841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diameter modulation by fast temperature control in laser-assisted chemical vapor deposition of single-walled carbon nanotubes.
    Mahjouri-Samani M; Zhou YS; Xiong W; Gao Y; Mitchell M; Jiang L; Lu YF
    Nanotechnology; 2010 Oct; 21(39):395601. PubMed ID: 20808037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling the diameter of carbon nanotubes in chemical vapor deposition method by carbon feeding.
    Lu C; Liu J
    J Phys Chem B; 2006 Oct; 110(41):20254-7. PubMed ID: 17034203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical vapor depositions of single-walled carbon nanotubes catalyzed by uniform fe(2)o(3) nanoclusters synthesized using diblock copolymer micelles.
    Fu Q; Huang S; Liu J
    J Phys Chem B; 2004 May; 108(20):6124-9. PubMed ID: 18950091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate-induced Raman frequency variation for single-walled carbon nanotubes.
    Zhang Y; Zhang J; Son H; Kong J; Liu Z
    J Am Chem Soc; 2005 Dec; 127(49):17156-7. PubMed ID: 16332042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.