These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 25131397)
1. Understanding the determinants of substrate specificity in IMP family metallo-β-lactamases: the importance of residue 262. Pegg KM; Liu EM; George AC; LaCuran AE; Bethel CR; Bonomo RA; Oelschlaeger P Protein Sci; 2014 Oct; 23(10):1451-60. PubMed ID: 25131397 [TBL] [Abstract][Full Text] [Related]
2. Elucidating the Role of Residue 67 in IMP-Type Metallo-β-Lactamase Evolution. LaCuran AE; Pegg KM; Liu EM; Bethel CR; Ai N; Welsh WJ; Bonomo RA; Oelschlaeger P Antimicrob Agents Chemother; 2015 Dec; 59(12):7299-307. PubMed ID: 26369960 [TBL] [Abstract][Full Text] [Related]
4. Diversity and Proliferation of Metallo-β-Lactamases: a Clarion Call for Clinically Effective Metallo-β-Lactamase Inhibitors. Somboro AM; Osei Sekyere J; Amoako DG; Essack SY; Bester LA Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30006399 [TBL] [Abstract][Full Text] [Related]
5. Modeling domino effects in enzymes: molecular basis of the substrate specificity of the bacterial metallo-beta-lactamases IMP-1 and IMP-6. Oelschlaeger P; Schmid RD; Pleiss J Biochemistry; 2003 Aug; 42(30):8945-56. PubMed ID: 12885227 [TBL] [Abstract][Full Text] [Related]
6. Understanding the molecular determinants of substrate and inhibitor specificities in the Carbapenemase KPC-2: exploring the roles of Arg220 and Glu276. Papp-Wallace KM; Taracila MA; Smith KM; Xu Y; Bonomo RA Antimicrob Agents Chemother; 2012 Aug; 56(8):4428-38. PubMed ID: 22687511 [TBL] [Abstract][Full Text] [Related]
7. Exploring the Role of Residue 228 in Substrate and Inhibitor Recognition by VIM Metallo-β-lactamases. Mojica MF; Mahler SG; Bethel CR; Taracila MA; Kosmopoulou M; Papp-Wallace KM; Llarrull LI; Wilson BM; Marshall SH; Wallace CJ; Villegas MV; Harris ME; Vila AJ; Spencer J; Bonomo RA Biochemistry; 2015 May; 54(20):3183-96. PubMed ID: 25915520 [TBL] [Abstract][Full Text] [Related]
8. Potential involvement of beta-lactamase homologous proteins in resistance to beta-lactam antibiotics in gram-negative bacteria of the ESKAPEE group. de Souza J; Vieira AZ; Dos Santos HG; Faoro H BMC Genomics; 2024 May; 25(1):508. PubMed ID: 38778284 [TBL] [Abstract][Full Text] [Related]
9. Structural Study of Metal Binding and Coordination in Ancient Metallo-β-Lactamase PNGM-1 Variants. Park YS; Kim TY; Park H; Lee JH; Nguyen DQ; Hong MK; Lee SH; Kang LW Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32664695 [TBL] [Abstract][Full Text] [Related]
10. Mutation S115T in IMP-Type Metallo-β-Lactamases Compensates for Decreased Expression Levels Caused by Mutation S119G. Zhang CJ; Faheem M; Dang P; Morris MN; Kumar P; Oelschlaeger P Biomolecules; 2019 Nov; 9(11):. PubMed ID: 31718049 [TBL] [Abstract][Full Text] [Related]
11. Difference in the Inhibitory Effect of Thiol Compounds and Demetallation Rates from the Zn(II) Active Site of Metallo-β-lactamases (IMP-1 and IMP-6) Associated with a Single Amino Acid Substitution. Yamaguchi Y; Kato K; Ichimaru Y; Uenosono Y; Tawara S; Ito R; Matsuse N; Wachino JI; Toma-Fukai S; Jin W; Arakawa Y; Otsuka M; Fujita M; Fukuishi N; Sugiura K; Imai M; Kurosaki H ACS Infect Dis; 2023 Jan; 9(1):65-78. PubMed ID: 36519431 [TBL] [Abstract][Full Text] [Related]
12. Role of Residues W228 and Y233 in the Structure and Activity of Metallo-β-Lactamase GIM-1. Skagseth S; Carlsen TJ; Bjerga GE; Spencer J; Samuelsen Ø; Leiros HK Antimicrob Agents Chemother; 2016 Feb; 60(2):990-1002. PubMed ID: 26643332 [TBL] [Abstract][Full Text] [Related]
13. Insight into stereochemistry of a new IMP allelic variant (IMP-55) metallo-β-lactamase identified in a clinical strain of Acinetobacter baumannii. Shakibaie MR; Azizi O; Shahcheraghi F Infect Genet Evol; 2017 Jul; 51():118-126. PubMed ID: 28336429 [TBL] [Abstract][Full Text] [Related]
14. B1-Metallo-β-Lactamases: Where Do We Stand? Mojica MF; Bonomo RA; Fast W Curr Drug Targets; 2016; 17(9):1029-50. PubMed ID: 26424398 [TBL] [Abstract][Full Text] [Related]
15. The interaction of the azetidine thiazole side chain with the active site loop (ASL) 3 drives the evolution of IMP metallo-β-lactamase against tebipenem. Ono D; Cmolik A; Bethel CR; Ishii Y; Drusin SI; Moreno DM; Vila AJ; Bonomo RA; Mojica MF Antimicrob Agents Chemother; 2024 Aug; 68(8):e0068724. PubMed ID: 39023262 [TBL] [Abstract][Full Text] [Related]
16. Structure, Function of Serine and Metallo-β-lactamases and their Inhibitors. Salahuddin P; Kumar A; Khan AU Curr Protein Pept Sci; 2018; 19(2):130-144. PubMed ID: 28745223 [TBL] [Abstract][Full Text] [Related]
17. Structural insights into the substrate specificity of IMP-6 and IMP-1 metallo-β-lactamases. Yamamoto K; Tanaka H; Kurisu G; Nakano R; Yano H; Sakai H J Biochem; 2022 Dec; 173(1):21-30. PubMed ID: 36174533 [TBL] [Abstract][Full Text] [Related]
18. Potency of IMP-10 metallo-beta-lactamase in hydrolysing various antipseudomonal beta-lactams. Zhao WH; Hu ZQ; Shimamura T J Med Microbiol; 2008 Aug; 57(Pt 8):974-979. PubMed ID: 18628498 [TBL] [Abstract][Full Text] [Related]