These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 25131406)

  • 1. Characterization of robotic system passive path repeatability during specimen removal and reinstallation for in vitro knee joint testing.
    Goldsmith MT; Smith SD; Jansson KS; LaPrade RF; Wijdicks CA
    Med Eng Phys; 2014 Oct; 36(10):1331-7. PubMed ID: 25131406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and validation of a cadaveric knee joint loading device compatible with magnetic resonance imaging and computed tomography.
    Chen L; Gordon K; Hurtig M
    Med Eng Phys; 2014 Oct; 36(10):1346-51. PubMed ID: 25080897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of position and path repeatability on force at the knee during six-DOF joint motion.
    Darcy SP; Gil JE; Woo SL; Debski RE
    Med Eng Phys; 2009 Jun; 31(5):553-7. PubMed ID: 19129002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of pose repeatability and specimen repositioning of a robotic joint testing platform.
    El Daou H; Lord B; Amis A; Rodriguez Y Baena F
    Med Eng Phys; 2017 Sep; 47():210-213. PubMed ID: 28651855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel testing platform for assessing knee joint mechanics: a parallel robotic system combined with an instrumented spatial linkage.
    Atarod M; Rosvold JM; Frank CB; Shrive NG
    Ann Biomed Eng; 2014 May; 42(5):1121-32. PubMed ID: 24519725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of three force-position hybrid control methods for a robot-based biological joint-testing system.
    Hsieh HJ; Hu CC; Lu TW; Lu HL; Kuo MY; Kuo CC; Hsu HC
    Biomed Eng Online; 2016 Jun; 15(1):62. PubMed ID: 27268070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Right-Left Differences in Knee Extension Stiffness for the Normal Rat Knee: In Vitro Measurements Using a New Testing Apparatus.
    Markolf KL; Evseenko D; Petrigliano F
    J Biomech Eng; 2016 Apr; 138(4):044501. PubMed ID: 26863930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical consequences of a tear of the posterior root of the medial meniscus. Similar to total meniscectomy.
    Allaire R; Muriuki M; Gilbertson L; Harner CD
    J Bone Joint Surg Am; 2008 Sep; 90(9):1922-31. PubMed ID: 18762653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of a six degree-of-freedom robotic system for hip in vitro biomechanical testing.
    Goldsmith MT; Rasmussen MT; Turnbull TL; Trindade CAC; LaPrade RF; Philippon MJ; Wijdicks CA
    J Biomech; 2015 Nov; 48(15):4093-4100. PubMed ID: 26537889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of in vivo dynamics during robot assisted joint movement.
    Bobrowitsch E; Lorenz A; Wülker N; Walter C
    Biomed Eng Online; 2014 Dec; 13():167. PubMed ID: 25516427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and validation of a general purpose robotic testing system for musculoskeletal applications.
    Noble LD; Colbrunn RW; Lee DG; van den Bogert AJ; Davis BL
    J Biomech Eng; 2010 Feb; 132(2):025001. PubMed ID: 20370251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robotic hip joint testing: Development and experimental protocols.
    El Daou H; Ng KCG; Van Arkel R; Jeffers JRT; Rodriguez Y Baena F
    Med Eng Phys; 2019 Jan; 63():57-62. PubMed ID: 30420164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical consequences of a tear of the posterior root of the medial meniscus. Surgical technique.
    Harner CD; Mauro CS; Lesniak BP; Romanowski JR
    J Bone Joint Surg Am; 2009 Oct; 91 Suppl 2():257-70. PubMed ID: 19805589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and validation of a robotic system for ankle joint testing.
    El Daou H; Calder JD; Stephen JM
    Med Eng Phys; 2018 Dec; 62():53-57. PubMed ID: 30344070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Reconfigurable Multiplanar In Vitro Simulator for Real-Time Absolute Motion With External and Musculotendon Forces.
    Green JT; Hale RF; Hausselle J; Gonzalez RV
    J Biomech Eng; 2017 Dec; 139(12):. PubMed ID: 28877307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EOS orthopaedic imaging system to study patellofemoral kinematics: assessment of uncertainty.
    Azmy C; Guérard S; Bonnet X; Gabrielli F; Skalli W
    Orthop Traumatol Surg Res; 2010 Feb; 96(1):28-36. PubMed ID: 20170853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anterolateral rotational knee instability: role of posterolateral structures. Winner of the AGA-DonJoy Award 2006.
    Zantop T; Schumacher T; Diermann N; Schanz S; Raschke MJ; Petersen W
    Arch Orthop Trauma Surg; 2007 Nov; 127(9):743-52. PubMed ID: 17072626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: A human cadaveric study using robotic technology.
    Kanamori A; Woo SL; Ma CB; Zeminski J; Rudy TW; Li G; Livesay GA
    Arthroscopy; 2000 Sep; 16(6):633-9. PubMed ID: 10976125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliability of navigated knee stability examination: a cadaveric evaluation.
    Pearle AD; Solomon DJ; Wanich T; Moreau-Gaudry A; Granchi CC; Wickiewicz TL; Warren RF
    Am J Sports Med; 2007 Aug; 35(8):1315-20. PubMed ID: 17440197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The reproducibility and repeatability of varus stress radiographs in the assessment of isolated fibular collateral ligament and grade-III posterolateral knee injuries. An in vitro biomechanical study.
    LaPrade RF; Heikes C; Bakker AJ; Jakobsen RB
    J Bone Joint Surg Am; 2008 Oct; 90(10):2069-76. PubMed ID: 18829903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.