BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 25131589)

  • 1. Amyloid β-peptide and Alzheimer's disease.
    Allsop D; Mayes J
    Essays Biochem; 2014; 56():99-110. PubMed ID: 25131589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alzheimer's disease.
    De-Paula VJ; Radanovic M; Diniz BS; Forlenza OV
    Subcell Biochem; 2012; 65():329-52. PubMed ID: 23225010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. APP transgenic modeling of Alzheimer's disease: mechanisms of neurodegeneration and aberrant neurogenesis.
    Crews L; Rockenstein E; Masliah E
    Brain Struct Funct; 2010 Mar; 214(2-3):111-26. PubMed ID: 20091183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of amyloid in the pathogenesis of Alzheimer's disease.
    Verbeek MM; Ruiter DJ; de Waal RM
    Biol Chem; 1997 Sep; 378(9):937-50. PubMed ID: 9348103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The pathophysiology of Alzheimer's disease with special reference to "amyloid cascade hypothesis"].
    Tamaoka A
    Rinsho Byori; 2013 Nov; 61(11):1060-9. PubMed ID: 24450113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity in Aβ deposit morphology and secondary proteome insolubility across models of Alzheimer-type amyloidosis.
    Xu G; Fromholt SE; Chakrabarty P; Zhu F; Liu X; Pace MC; Koh J; Golde TE; Levites Y; Lewis J; Borchelt DR
    Acta Neuropathol Commun; 2020 Apr; 8(1):43. PubMed ID: 32252825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small heat shock protein HspB8: its distribution in Alzheimer's disease brains and its inhibition of amyloid-beta protein aggregation and cerebrovascular amyloid-beta toxicity.
    Wilhelmus MM; Boelens WC; Otte-Höller I; Kamps B; Kusters B; Maat-Schieman ML; de Waal RM; Verbeek MM
    Acta Neuropathol; 2006 Feb; 111(2):139-49. PubMed ID: 16485107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of LR11/SORLA enhances early pathology in a mouse model of amyloidosis: evidence for a proximal role in Alzheimer's disease.
    Dodson SE; Andersen OM; Karmali V; Fritz JJ; Cheng D; Peng J; Levey AI; Willnow TE; Lah JJ
    J Neurosci; 2008 Nov; 28(48):12877-86. PubMed ID: 19036982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abeta as a bioflocculant: implications for the amyloid hypothesis of Alzheimer's disease.
    Robinson SR; Bishop GM
    Neurobiol Aging; 2002; 23(6):1051-72. PubMed ID: 12470802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Alzheimer disease: cellular and molecular aspects].
    Octave JN
    Bull Mem Acad R Med Belg; 2005; 160(10-12):445-9; discussion 450-1. PubMed ID: 16768248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Involvement of beta-amyloid in the etiology of Alzheimer's disease].
    Tomiyama T
    Brain Nerve; 2010 Jul; 62(7):691-9. PubMed ID: 20675873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amyloid binding ligands as Alzheimer's disease therapies.
    Lee VM
    Neurobiol Aging; 2002; 23(6):1039-42. PubMed ID: 12470800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-canonical soluble amyloid-beta aggregates and plaque buffering: controversies and future directions for target discovery in Alzheimer's disease.
    Brody DL; Jiang H; Wildburger N; Esparza TJ
    Alzheimers Res Ther; 2017 Aug; 9(1):62. PubMed ID: 28818091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are N- and C-terminally truncated Aβ species key pathological triggers in Alzheimer's disease?
    Dunys J; Valverde A; Checler F
    J Biol Chem; 2018 Oct; 293(40):15419-15428. PubMed ID: 30143530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amyloid-induced neurofibrillary tangle formation in Alzheimer's disease: insight from transgenic mouse and tissue-culture models.
    Götz J; Schild A; Hoerndli F; Pennanen L
    Int J Dev Neurosci; 2004 Nov; 22(7):453-65. PubMed ID: 15465275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant-based chimeric HPV-virus-like particles bearing amyloid-β epitopes elicit antibodies able to recognize amyloid plaques in APP-tg mouse and Alzheimer's disease brains.
    Gonzalez-Castro R; Acero Galindo G; García Salcedo Y; Uribe Campero L; Vazquez Perez V; Carrillo-Tripp M; Gevorkian G; Gomez Lim MA
    Inflammopharmacology; 2018 Jun; 26(3):817-827. PubMed ID: 29094307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of optogenetic Amyloid-β distinguishes between metabolic and physical damages in neurodegeneration.
    Lim CH; Kaur P; Teo E; Lam VYM; Zhu F; Kibat C; Gruber J; Mathuru AS; Tolwinski NS
    Elife; 2020 Mar; 9():. PubMed ID: 32228858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preamyloid lesions and cerebrovascular deposits in the mechanism of dementia: lessons from non-beta-amyloid cerebral amyloidosis.
    Rostagno A; Ghiso J
    Neurodegener Dis; 2008; 5(3-4):173-5. PubMed ID: 18322382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the Potential of Therapeutic Agents Targeted towards Mitigating the Events Associated with Amyloid-β Cascade in Alzheimer's Disease.
    Behl T; Kaur I; Fratila O; Brata R; Bungau S
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33050199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collagenous Alzheimer amyloid plaque component impacts on the compaction of amyloid-β plaques.
    Hashimoto T; Fujii D; Naka Y; Kashiwagi-Hakozaki M; Matsuo Y; Matsuura Y; Wakabayashi T; Iwatsubo T
    Acta Neuropathol Commun; 2020 Dec; 8(1):212. PubMed ID: 33287899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.