These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 25132153)

  • 1. A note on the efficiencies of sampling strategies in two-stage Bayesian regional fine mapping of a quantitative trait.
    Chen Z; Craiu RV; Bull SB
    Genet Epidemiol; 2014 Nov; 38(7):599-609. PubMed ID: 25132153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The flashfm approach for fine-mapping multiple quantitative traits.
    Hernández N; Soenksen J; Newcombe P; Sandhu M; Barroso I; Wallace C; Asimit JL
    Nat Commun; 2021 Oct; 12(1):6147. PubMed ID: 34686674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-phase sample selection strategies for design and analysis in post-genome-wide association fine-mapping studies.
    Espin-Garcia O; Craiu RV; Bull SB
    Stat Med; 2021 Dec; 40(30):6792-6817. PubMed ID: 34596256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-phase stratified sampling designs for regional sequencing.
    Chen Z; Craiu RV; Bull SB
    Genet Epidemiol; 2012 May; 36(4):320-32. PubMed ID: 22460746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-phase designs for joint quantitative-trait-dependent and genotype-dependent sampling in post-GWAS regional sequencing.
    Espin-Garcia O; Craiu RV; Bull SB
    Genet Epidemiol; 2018 Feb; 42(1):104-116. PubMed ID: 29239496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic Variant Selection: Learning Across Traits and Sites.
    Stell L; Sabatti C
    Genetics; 2016 Feb; 202(2):439-55. PubMed ID: 26680660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the coverage of credible sets in Bayesian genetic fine-mapping.
    Hutchinson A; Watson H; Wallace C
    PLoS Comput Biol; 2020 Apr; 16(4):e1007829. PubMed ID: 32282791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the Performance of Fine-Mapping Strategies at Common Variant GWAS Loci.
    van de Bunt M; Cortes A; ; Brown MA; Morris AP; McCarthy MI
    PLoS Genet; 2015; 11(9):e1005535. PubMed ID: 26406328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structured Genome-Wide Association Studies with Bayesian Hierarchical Variable Selection.
    Zhao Y; Zhu H; Lu Z; Knickmeyer RC; Zou F
    Genetics; 2019 Jun; 212(2):397-415. PubMed ID: 31010934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Multiple-Trait Bayesian Variable Selection Regression Method for Integrating Phenotypic Causal Networks in Genome-Wide Association Studies.
    Wang Z; Chapman D; Morota G; Cheng H
    G3 (Bethesda); 2020 Dec; 10(12):4439-4448. PubMed ID: 33020191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Re-ranking sequencing variants in the post-GWAS era for accurate causal variant identification.
    Faye LL; Machiela MJ; Kraft P; Bull SB; Sun L
    PLoS Genet; 2013; 9(8):e1003609. PubMed ID: 23950724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient unified model for genome-wide association studies and genomic selection.
    Li H; Su G; Jiang L; Bao Z
    Genet Sel Evol; 2017 Aug; 49(1):64. PubMed ID: 28836943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-phase designs to follow-up genome-wide association signals with DNA resequencing studies.
    Schaid DJ; Jenkins GD; Ingle JN; Weinshilboum RM
    Genet Epidemiol; 2013 Apr; 37(3):229-38. PubMed ID: 23348637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporating Functional Genomic Information in Genetic Association Studies Using an Empirical Bayes Approach.
    Spencer AV; Cox A; Lin WY; Easton DF; Michailidou K; Walters K
    Genet Epidemiol; 2016 Apr; 40(3):176-87. PubMed ID: 26833494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing Single-SNP, Multi-SNP, and Haplotype-Based Approaches in Association Studies for Major Traits in Barley.
    Abed A; Belzile F
    Plant Genome; 2019 Nov; 12(3):1-14. PubMed ID: 33016584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved methods for multi-trait fine mapping of pleiotropic risk loci.
    Kichaev G; Roytman M; Johnson R; Eskin E; Lindström S; Kraft P; Pasaniuc B
    Bioinformatics; 2017 Jan; 33(2):248-255. PubMed ID: 27663501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative trait nucleotide analysis using Bayesian model selection.
    Blangero J; Goring HH; Kent JW; Williams JT; Peterson CP; Almasy L; Dyer TD
    Hum Biol; 2005 Oct; 77(5):541-59. PubMed ID: 16596940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limits on the reproducibility of marker associations with southern leaf blight resistance in the maize nested association mapping population.
    Bian Y; Yang Q; Balint-Kurti PJ; Wisser RJ; Holland JB
    BMC Genomics; 2014 Dec; 15(1):1068. PubMed ID: 25475173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A statistical approach to fine-mapping for the identification of potential causal variants related to human intelligence.
    Gong Y; Greenbaum J; Deng HW
    J Hum Genet; 2019 Aug; 64(8):781-787. PubMed ID: 31165785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.