These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 25132195)

  • 1. Size-dependent thermochromism through enhanced electron-phonon coupling in 1 nm quantum dots.
    Tamaki H; Watanabe H; Kamiyama S; Oaki Y; Imai H
    Angew Chem Int Ed Engl; 2014 Sep; 53(40):10706-9. PubMed ID: 25132195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Encapsulation of Ultrasmall CuO Quantum Dots with Controlled Band-Gap and Reversible Thermochromism.
    Ge Y; Shah ZH; Wang C; Wang J; Mao W; Zhang S; Lu R
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26437-44. PubMed ID: 26600010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong quantum confinement effect and reduced Fröhlich exciton-phonon coupling in ZnO quantum dots embedded inside a SiO2 matrix.
    Ning JQ; Zheng CC; Zhang XH; Xu SJ
    Nanoscale; 2015 Nov; 7(41):17482-7. PubMed ID: 26439089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature-dependent Raman study of thermal parameters in CdS quantum dots.
    Freitas Neto ES; Dantas NO; da Silva SW; Morais PC; Pereira-da-Silva MA; Moreno AJ; López-Richard V; Marques GE; Trallero-Giner C
    Nanotechnology; 2012 Mar; 23(12):125701. PubMed ID: 22397807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low temperature photoluminescence properties of CsPbBr
    Ai B; Liu C; Deng Z; Wang J; Han J; Zhao X
    Phys Chem Chem Phys; 2017 Jul; 19(26):17349-17355. PubMed ID: 28650051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstructure-controlled aerosol-gel synthesis of ZnO quantum dots dispersed in SiO2 nanospheres.
    Firmansyah DA; Kim SG; Lee KS; Zahaf R; Kim YH; Lee D
    Langmuir; 2012 Feb; 28(5):2890-6. PubMed ID: 22221080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of confinement effects in ZnO quantum dots.
    Haranath D; Sahai S; Joshi AG; Gupta BK; Shanker V
    Nanotechnology; 2009 Oct; 20(42):425701. PubMed ID: 19779241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of the Electron-Phonon Coupling in PbS/MnTe Quantum Dots Based on Temperature-Dependent Photoluminescence.
    Halim ND; Zaini MS; Talib ZA; Liew JYC; Kamarudin MA
    Micromachines (Basel); 2022 Mar; 13(3):. PubMed ID: 35334735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bandgap Tunability of Transition Metal Dichalcogenide Atomic Layers.
    Rice Q; Tabibi B; Seo FJ
    J Nanosci Nanotechnol; 2018 Mar; 18(3):2175-2176. PubMed ID: 29448739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size effect on the electron-phonon coupling in CuO nanocrystals.
    Fan H; Zou B; Liu Y; Xie S
    Nanotechnology; 2006 Feb; 17(4):1099-103. PubMed ID: 21727387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning optical properties of Si quantum dots by π-conjugated capping molecules.
    Dung MX; Tung DD; Jeong S; Jeong HD
    Chem Asian J; 2013 Mar; 8(3):653-64. PubMed ID: 23307703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CuO quantum-dot-sensitized mesoporous ZnO for visible-light photocatalysis.
    Liu Y; Shi J; Peng Q; Li Y
    Chemistry; 2013 Mar; 19(13):4319-26. PubMed ID: 23447144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of luminescent monolayered tungsten dichalcogenides quantum dots with giant spin-valley coupling.
    Lin L; Xu Y; Zhang S; Ross IM; Ong AC; Allwood DA
    ACS Nano; 2013 Sep; 7(9):8214-23. PubMed ID: 23968363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel and green process for the production of tin oxide quantum dots and its application as a photocatalyst for the degradation of dyes from aqueous phase.
    Bhattacharjee A; Ahmaruzzaman M
    J Colloid Interface Sci; 2015 Jun; 448():130-9. PubMed ID: 25725397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-dependent photoluminescence properties of quaternary ZnAgInS quantum dots.
    Zhou P; Zhang X; Liu X; Xu J; Li L
    Opt Express; 2016 Aug; 24(17):19506-16. PubMed ID: 27557228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emission-tunable CuInS2/ZnS quantum dots: structure, optical properties, and application in white light-emitting diodes with high color rendering index.
    Chuang PH; Lin CC; Liu RS
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15379-87. PubMed ID: 25111960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Quantitative determination of pazufloxacin using water-soluble quantum dots as fluorescent probes].
    Ling X; Deng DW; Zhong WY; Yu JS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1317-21. PubMed ID: 18800713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Room temperature formaldehyde sensors with enhanced performance, fast response and recovery based on zinc oxide quantum dots/graphene nanocomposites.
    Huang Q; Zeng D; Li H; Xie C
    Nanoscale; 2012 Sep; 4(18):5651-8. PubMed ID: 22868941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly lattice-mismatched semiconductor-metal hybrid nanostructures: gold nanoparticle encapsulated luminescent silicon quantum dots.
    Ray M; Basu TS; Bandyopadhyay NR; Klie RF; Ghosh S; Raja SO; Dasgupta AK
    Nanoscale; 2014 Feb; 6(4):2201-10. PubMed ID: 24382635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.