BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 25132509)

  • 1. Production of D-lactic acid in a continuous membrane integrated fermentation reactor by genetically modified Saccharomyces cerevisiae: enhancement in D-lactic acid carbon yield.
    Mimitsuka T; Sawai K; Kobayashi K; Tsukada T; Takeuchi N; Yamada K; Ogino H; Yonehara T
    J Biosci Bioeng; 2015 Jan; 119(1):65-71. PubMed ID: 25132509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolomics approach to reduce the Crabtree effect in continuous culture of Saccharomyces cerevisiae.
    Imura M; Iwakiri R; Bamba T; Fukusaki E
    J Biosci Bioeng; 2018 Aug; 126(2):183-188. PubMed ID: 29685822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L-lactic acid.
    Lee JY; Kang CD; Lee SH; Park YK; Cho KM
    Biotechnol Bioeng; 2015 Apr; 112(4):751-8. PubMed ID: 25363674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. D-lactic acid production by metabolically engineered Saccharomyces cerevisiae.
    Ishida N; Suzuki T; Tokuhiro K; Nagamori E; Onishi T; Saitoh S; Kitamoto K; Takahashi H
    J Biosci Bioeng; 2006 Feb; 101(2):172-7. PubMed ID: 16569615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fed-batch system for cultivating genetically engineered yeast that produces lactic acid via the fermentative promoter.
    Nagamori E; Fujita H; Shimizu K; Tokuhiro K; Ishida N; Takahashi H
    J Biosci Bioeng; 2013 Feb; 115(2):193-5. PubMed ID: 23021912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel homologous lactate transporter improves L-lactic acid production from glycerol in recombinant strains of Pichia pastoris.
    de Lima PB; Mulder KC; Melo NT; Carvalho LS; Menino GS; Mulinari E; de Castro VH; Dos Reis TF; Goldman GH; Magalhães BS; Parachin NS
    Microb Cell Fact; 2016 Sep; 15(1):158. PubMed ID: 27634467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A membrane-integrated fermentation reactor system: its effects in reducing the amount of sub-raw materials for D-lactic acid continuous fermentation by Sporolactobacillus laevolacticus.
    Mimitsuka T; Na K; Morita K; Sawai H; Minegishi S; Henmi M; Yamada K; Shimizu S; Yonehara T
    Biosci Biotechnol Biochem; 2012; 76(1):67-72. PubMed ID: 22277286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic engineering of Saccharomyces cerevisiae for D-lactic acid production with near theoretical yield.
    Watcharawipas A; Sae-Tang K; Sansatchanon K; Sudying P; Boonchoo K; Tanapongpipat S; Kocharin K; Runguphan W
    FEMS Yeast Res; 2021 Apr; 21(4):. PubMed ID: 33856451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactic acid production from cellobiose and xylose by engineered Saccharomyces cerevisiae.
    Turner TL; Zhang GC; Oh EJ; Subramaniam V; Adiputra A; Subramaniam V; Skory CD; Jang JY; Yu BJ; Park I; Jin YS
    Biotechnol Bioeng; 2016 May; 113(5):1075-83. PubMed ID: 26524688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of ESBP6 improves lactic acid resistance and production in Saccharomyces cerevisiae.
    Sugiyama M; Akase SP; Nakanishi R; Kaneko Y; Harashima S
    J Biosci Bioeng; 2016 Oct; 122(4):415-20. PubMed ID: 27102264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane-integrated fermentation system for improving the optical purity of D-lactic acid produced during continuous fermentation.
    Sawai H; Na K; Sasaki N; Mimitsuka T; Minegishi S; Henmi M; Yamada K; Shimizu S; Yonehara T
    Biosci Biotechnol Biochem; 2011; 75(12):2326-32. PubMed ID: 22146719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of lactic acid production in Saccharomyces cerevisiae by a deletion of ssb1.
    Lee JJ; Crook N; Sun J; Alper HS
    J Ind Microbiol Biotechnol; 2016 Jan; 43(1):87-96. PubMed ID: 26660479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of d-Lactic Acid Production in Saccharomyces cerevisiae Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering.
    Baek SH; Kwon EY; Bae SJ; Cho BR; Kim SY; Hahn JS
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of metabolic profiles of yeasts based on the difference of the Crabtree positive and negative.
    Imura M; Nitta K; Iwakiri R; Matsuda F; Shimizu H; Fukusaki E
    J Biosci Bioeng; 2020 Jan; 129(1):52-58. PubMed ID: 31537452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Modification of carbon flux in Sacchromyces cerevisiae to improve L-lactic acid production].
    Zhao L; Wang J; Zhou J; Liu L; Du G; Chen J
    Wei Sheng Wu Xue Bao; 2011 Jan; 51(1):50-8. PubMed ID: 21465789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of Lactobacillus plantarum contamination on the carbohydrate and energy related metabolisms of Saccharomyces cerevisiae during bioethanol fermentation.
    Dong SJ; Lin XH; Li H
    Int J Biochem Cell Biol; 2015 Nov; 68():33-41. PubMed ID: 26279142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.
    Novy V; Brunner B; Müller G; Nidetzky B
    Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic Engineering and Adaptive Evolution for Efficient Production of l-Lactic Acid in Saccharomyces cerevisiae.
    Zhu P; Luo R; Li Y; Chen X
    Microbiol Spectr; 2022 Dec; 10(6):e0227722. PubMed ID: 36354322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae.
    Najafpour G; Younesi H; Syahidah Ku Ismail K
    Bioresour Technol; 2004 May; 92(3):251-60. PubMed ID: 14766158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I
    Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.