BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

610 related articles for article (PubMed ID: 25132912)

  • 21. Mitochondrial hyperfusion: a friend or a foe.
    Das R; Chakrabarti O
    Biochem Soc Trans; 2020 Apr; 48(2):631-644. PubMed ID: 32219382
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitochondrial aging and age-related dysfunction of mitochondria.
    Chistiakov DA; Sobenin IA; Revin VV; Orekhov AN; Bobryshev YV
    Biomed Res Int; 2014; 2014():238463. PubMed ID: 24818134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aging of cardiac myocytes in culture: oxidative stress, lipofuscin accumulation, and mitochondrial turnover.
    Terman A; Dalen H; Eaton JW; Neuzil J; Brunk UT
    Ann N Y Acad Sci; 2004 Jun; 1019():70-7. PubMed ID: 15246997
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New insights into the role of mitochondria in aging: mitochondrial dynamics and more.
    Seo AY; Joseph AM; Dutta D; Hwang JC; Aris JP; Leeuwenburgh C
    J Cell Sci; 2010 Aug; 123(Pt 15):2533-42. PubMed ID: 20940129
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Roles of Mitochondrial Dysfunction and Reactive Oxygen Species in Aging and Senescence.
    Zia A; Farkhondeh T; Pourbagher-Shahri AM; Samarghandian S
    Curr Mol Med; 2022; 22(1):37-49. PubMed ID: 33602082
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The ubiquitin-proteasome system and autophagy are defective in the taurine-deficient heart.
    Jong CJ; Ito T; Schaffer SW
    Amino Acids; 2015 Dec; 47(12):2609-22. PubMed ID: 26193770
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MAPK15 protects from oxidative stress-dependent cellular senescence by inducing the mitophagic process.
    Franci L; Tubita A; Bertolino FM; Palma A; Cannino G; Settembre C; Rasola A; Rovida E; Chiariello M
    Aging Cell; 2022 Jul; 21(7):e13620. PubMed ID: 35642724
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lessons from the Discovery of Mitochondrial Fragmentation (Fission): A Review and Update.
    Zorov DB; Vorobjev IA; Popkov VA; Babenko VA; Zorova LD; Pevzner IB; Silachev DN; Zorov SD; Andrianova NV; Plotnikov EY
    Cells; 2019 Feb; 8(2):. PubMed ID: 30791381
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Receptor-mediated mitophagy.
    Yamaguchi O; Murakawa T; Nishida K; Otsu K
    J Mol Cell Cardiol; 2016 Jun; 95():50-6. PubMed ID: 27021519
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications.
    Rovira-Llopis S; Bañuls C; Diaz-Morales N; Hernandez-Mijares A; Rocha M; Victor VM
    Redox Biol; 2017 Apr; 11():637-645. PubMed ID: 28131082
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amyloid Beta and Phosphorylated Tau-Induced Defective Autophagy and Mitophagy in Alzheimer's Disease.
    Reddy PH; Oliver DM
    Cells; 2019 May; 8(5):. PubMed ID: 31121890
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Progress in regulation of mitochondrial dynamics and mitochondrial autophagy].
    Cheng J; Wei L; Li M
    Sheng Li Xue Bao; 2020 Aug; 72(4):475-487. PubMed ID: 32820310
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitophagy in yeast: Molecular mechanisms and physiological role.
    Kanki T; Furukawa K; Yamashita S
    Biochim Biophys Acta; 2015 Oct; 1853(10 Pt B):2756-65. PubMed ID: 25603537
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aging is associated with a decline in Atg9b-mediated autophagosome formation and appearance of enlarged mitochondria in the heart.
    Liang W; Moyzis AG; Lampert MA; Diao RY; Najor RH; Gustafsson ÅB
    Aging Cell; 2020 Aug; 19(8):e13187. PubMed ID: 32627317
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondrial Aging: Is There a Mitochondrial Clock?
    Zorov DB; Popkov VA; Zorova LD; Vorobjev IA; Pevzner IB; Silachev DN; Zorov SD; Jankauskas SS; Babenko VA; Plotnikov EY
    J Gerontol A Biol Sci Med Sci; 2017 Sep; 72(9):1171-1179. PubMed ID: 27927758
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PINK1 protects against oxidative stress induced senescence of human nucleus pulposus cells via regulating mitophagy.
    Wang Y; Shen J; Chen Y; Liu H; Zhou H; Bai Z; Hu Z; Guo X
    Biochem Biophys Res Commun; 2018 Oct; 504(2):406-414. PubMed ID: 29890141
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pathological Roles of Mitochondrial Oxidative Stress and Mitochondrial Dynamics in Cardiac Microvascular Ischemia/Reperfusion Injury.
    Zhou H; Toan S
    Biomolecules; 2020 Jan; 10(1):. PubMed ID: 31948043
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial quality control: The role of mitophagy in aging.
    Shi R; Guberman M; Kirshenbaum LA
    Trends Cardiovasc Med; 2018 May; 28(4):246-260. PubMed ID: 29287956
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial fission induces glycolytic reprogramming in cancer-associated myofibroblasts, driving stromal lactate production, and early tumor growth.
    Guido C; Whitaker-Menezes D; Lin Z; Pestell RG; Howell A; Zimmers TA; Casimiro MC; Aquila S; Ando' S; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Oncotarget; 2012 Aug; 3(8):798-810. PubMed ID: 22878233
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contribution of impaired mitochondrial autophagy to cardiac aging: mechanisms and therapeutic opportunities.
    Dutta D; Calvani R; Bernabei R; Leeuwenburgh C; Marzetti E
    Circ Res; 2012 Apr; 110(8):1125-38. PubMed ID: 22499902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.