These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 25133240)

  • 1. Modelling hydrology of a single bioretention system with HYDRUS-1D.
    Meng Y; Wang H; Chen J; Zhang S
    ScientificWorldJournal; 2014; 2014():521047. PubMed ID: 25133240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An event-based hydrologic simulation model for bioretention systems.
    Roy-Poirier A; Filion Y; Champagne P
    Water Sci Technol; 2015; 72(9):1524-33. PubMed ID: 26524443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical evaluation of bioretention system for hydrologic performance.
    Li ZY; Lam KM
    Water Sci Technol; 2015; 71(11):1742-9. PubMed ID: 26038941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrological modeling and field validation of a bioretention basin.
    Wang J; Chua LHC; Shanahan P
    J Environ Manage; 2019 Jun; 240():149-159. PubMed ID: 30933819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance characterisation of a stormwater treatment bioretention basin.
    Mangangka IR; Liu A; Egodawatta P; Goonetilleke A
    J Environ Manage; 2015 Mar; 150():173-178. PubMed ID: 25490107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrologic performance of bioretention in an expressway service area.
    Gao J; Pan J; Hu N; Xie C
    Water Sci Technol; 2018 Apr; 77(7-8):1829-1837. PubMed ID: 29676740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A case in subtropical climate city: Assessing the bioretention hydraulic performance on storm in response to poor permeability soil.
    Huang J; Yu Z; Qin Y; Wang L; Huang Y; Huang Y
    J Environ Manage; 2021 Sep; 293():112952. PubMed ID: 34102494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating Tank Model and adsorption/desorption characteristics of filter media to simulate outflow water quantity and quality of a bioretention basin: A case study of biochar-based bioretention basin.
    Hong N; Cheng Q; Wijesiri B; Bandala ER; Goonetilleke A; Liu A
    J Environ Manage; 2022 Feb; 304():114282. PubMed ID: 34920283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Building resiliency to climate change uncertainty through bioretention design modifications.
    Tirpak RA; Hathaway JM; Khojandi A; Weathers M; Epps TH
    J Environ Manage; 2021 Jun; 287():112300. PubMed ID: 33706090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of wood-derived biochar on the hydrologic performance of bioretention media: Effects on aggregation, root growth, and water retention.
    Akpinar D; Tian J; Shepherd E; Imhoff PT
    J Environ Manage; 2023 Aug; 339():117864. PubMed ID: 37080095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stormwater quantity and quality control performance of bioretention systems: A literature review.
    Zhang WL; Zhang SH; Zhang JJ
    Ying Yong Sheng Tai Xue Bao; 2023 Jan; 34(1):264-276. PubMed ID: 36799403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrology and rainfall runoff pollutant removal performance of biochar-amended bioretention facilities based on field-scale experiments in lateritic red soil regions.
    Mai Y; Huang G
    Sci Total Environ; 2021 Mar; 761():143252. PubMed ID: 33183819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrologic and soil properties of mature bioretention cells in Ontario, Canada.
    Spraakman S; Drake JAP
    Water Sci Technol; 2021 Dec; 84(12):3541-3560. PubMed ID: 34928825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioretention performance under different rainfall regimes in subtropical conditions: A case study in São Carlos, Brazil.
    Batalini de Macedo M; Ambrogi Ferreira do Lago C; Mendiondo EM; Giacomoni MH
    J Environ Manage; 2019 Oct; 248():109266. PubMed ID: 31330273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochar and fungi as bioretention amendments for bacteria and PAH removal from stormwater.
    Mitchell CJ; Jayakaran AD; McIntyre JK
    J Environ Manage; 2023 Feb; 327():116915. PubMed ID: 36462489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stormwater retention and detention performance of green roofs with different substrates: Observational data and hydrological simulations.
    Zhang S; Lin Z; Zhang S; Ge D
    J Environ Manage; 2021 Aug; 291():112682. PubMed ID: 33964623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance evaluation of modified bioretention systems with alkaline solid wastes for enhanced nutrient removal from stormwater runoff.
    You Z; Zhang L; Pan SY; Chiang PC; Pei S; Zhang S
    Water Res; 2019 Sep; 161():61-73. PubMed ID: 31176885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The migration and accumulation of typical pollutants in the growing media layer of bioretention facilities.
    Gong Y; Li X; Xie P; Fu H; Nie L; Li J; Li Y
    Environ Sci Pollut Res Int; 2023 Mar; 30(15):44591-44606. PubMed ID: 36694065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evaluation of hydrologic modeling performance of EPA SWMM for bioretention.
    Gülbaz S; Kazezyılmaz-Alhan CM
    Water Sci Technol; 2017 Dec; 76(11-12):3035-3043. PubMed ID: 29210689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of vegetation treatment and water stress on evapotranspiration in bioretention systems.
    De-Ville S; Edmondson J; Green D; Stirling R; Dawson R; Stovin V
    Water Res; 2024 Mar; 252():121182. PubMed ID: 38290238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.