These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25133240)

  • 21. Evaluation of the effects of low-impact development practices under different rainy types: case of Fuxing Island Park, Shanghai, China.
    Wang HW; Zhai YJ; Wei YY; Mao YF
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):6706-6716. PubMed ID: 30632038
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methodology to simulate unsaturated zone hydrology in Storm Water Management Model (SWMM) for green infrastructure design and evaluation.
    Tu MC; Wadzuk B; Traver R
    PLoS One; 2020; 15(7):e0235528. PubMed ID: 32628703
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling the effects of parameter optimization on three bioretention tanks using the HYDRUS-1D model.
    Li J; Zhao R; Li Y; Chen L
    J Environ Manage; 2018 Jul; 217():38-46. PubMed ID: 29587199
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Bioretention Media Screening for the Removal of Phosphorus in Urban Stormwater].
    Li LQ; Gong YF; Yan ZQ; Shan BQ
    Huan Jing Ke Xue; 2015 Jul; 36(7):2511-7. PubMed ID: 26489319
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessing performance of porous pavements and bioretention cells for stormwater management in response to probable climatic changes.
    Wang M; Zhang D; Cheng Y; Tan SK
    J Environ Manage; 2019 Aug; 243():157-167. PubMed ID: 31096169
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The pollution removal and stormwater reduction performance of street-side bioretention basins after ten years in operation.
    Lucke T; Nichols PWB
    Sci Total Environ; 2015 Dec; 536():784-792. PubMed ID: 26254078
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Effects of Three Bioretention Configurations on Dissolved Nitrogen Removal from Urban Stormwater].
    Li LQ; Hu N; Liu YQ; Tu SL; Chen HC
    Huan Jing Ke Xue; 2017 May; 38(5):1881-1888. PubMed ID: 29965092
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioretention planter performance measured by lag and capture.
    Nissen KA; Borst M; Fassman-Beck E
    Hydrol Process; 2020 Dec; 34(25):5176-5184. PubMed ID: 33627939
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The impact of media, plants and their interactions on bioretention performance: A review.
    Skorobogatov A; He J; Chu A; Valeo C; van Duin B
    Sci Total Environ; 2020 May; 715():136918. PubMed ID: 32007889
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of a green roof practice using the coupled SWMM and HYDRUS models.
    Baek S; Ligaray M; Pachepsky Y; Chun JA; Yoon KS; Park Y; Cho KH
    J Environ Manage; 2020 May; 261():109920. PubMed ID: 31999613
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Supporting evidences for vegetation-enhanced stormwater infiltration in bioretention systems: a comprehensive review.
    Técher D; Berthier E
    Environ Sci Pollut Res Int; 2023 Feb; 30(8):19705-19724. PubMed ID: 36653688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Factors Contributing to the Hydrologic Effectiveness of a Rain Garden Network (Cincinnati OH USA).
    Shuster WD; Darner RA; Schifman LA; Herrmann DL
    Infrastructures (Basel); 2017 Sep; 2(3):. PubMed ID: 32832712
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Abundance, distribution, and composition of microplastics in the filter media of nine aged stormwater bioretention systems.
    Lange K; Furén R; Österlund H; Winston R; Tirpak RA; Nordqvist K; Smith J; Dorsey J; Viklander M; Blecken GT
    Chemosphere; 2023 Apr; 320():138103. PubMed ID: 36775039
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting bioretention pollutant removal efficiency with design features: A data-driven approach.
    Wang R; Zhang X; Li MH
    J Environ Manage; 2019 Jul; 242():403-414. PubMed ID: 31059953
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling multi-year phosphorus dynamics in a bioretention cell: Phosphorus partitioning, accumulation, and export.
    Zhou B; Shafii M; Parsons CT; Passeport E; Rezanezhad F; Lisogorsky A; Van Cappellen P
    Sci Total Environ; 2023 Jun; 876():162749. PubMed ID: 36906029
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Implications of Using Different Water Sources When Hydrologically Compacting Bioretention Columns.
    Stahnke CA; Poor CJ
    Water Environ Res; 2017 May; 89(5):451-455. PubMed ID: 28442005
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Learning from the operation, pathology and maintenance of a bioretention system to optimize urban drainage practices.
    de Macedo MB; Rosa A; do Lago CAF; Mendiondo EM; de Souza VCB
    J Environ Manage; 2017 Dec; 204(Pt 1):454-466. PubMed ID: 28917180
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Urban Runoff Phosphorus Removal Pathways in Bioretention Systems].
    Li LQ; Liu YQ; Yang JM; Wang J
    Huan Jing Ke Xue; 2018 Jul; 39(7):3150-3157. PubMed ID: 29962138
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluating the effectiveness of management practices on hydrology and water quality at watershed scale with a rainfall-runoff model.
    Liu Y; Bralts VF; Engel BA
    Sci Total Environ; 2015 Apr; 511():298-308. PubMed ID: 25553544
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simulation of the hydraulic performance of highway filter drains through laboratory models and stormwater management tools.
    Sañudo-Fontaneda LA; Jato-Espino D; Lashford C; Coupe SJ
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19228-19237. PubMed ID: 28534267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.