These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25133264)

  • 1. Expression profiles of 12 late embryogenesis abundant protein genes from Tamarix hispida in response to abiotic stress.
    Gao C; Liu Y; Wang C; Zhang K; Wang Y
    ScientificWorldJournal; 2014; 2014():868391. PubMed ID: 25133264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and expression analysis of 14 lipid transfer protein genes from Tamarix hispida responding to different abiotic stresses.
    Wang C; Yang C; Gao C; Wang Y
    Tree Physiol; 2009 Dec; 29(12):1607-19. PubMed ID: 19808707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression analysis of four peroxiredoxin genes from Tamarix hispida in response to different abiotic stresses and Exogenous Abscisic Acid (ABA).
    Gao C; Zhang K; Yang G; Wang Y
    Int J Mol Sci; 2012; 13(3):3751-3764. PubMed ID: 22489180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression analysis of MYC genes from Tamarix hispida in response to different abiotic stresses.
    Ji X; Wang Y; Liu G
    Int J Mol Sci; 2012; 13(2):1300-1313. PubMed ID: 22408392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression analysis of nine small heat shock protein genes from Tamarix hispida in response to different abiotic stresses and abscisic acid treatment.
    Yang G; Wang Y; Zhang K; Gao C
    Mol Biol Rep; 2014 Mar; 41(3):1279-89. PubMed ID: 24395294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of a heat shock protein (ThHSP18.3) from Tamarix hispida confers stress tolerance to yeast.
    Gao C; Jiang B; Wang Y; Liu G; Yang C
    Mol Biol Rep; 2012 Apr; 39(4):4889-97. PubMed ID: 22109899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A ThDREB gene from Tamarix hispida improved the salt and drought tolerance of transgenic tobacco and T. hispida.
    Yang G; Yu L; Zhang K; Zhao Y; Guo Y; Gao C
    Plant Physiol Biochem; 2017 Apr; 113():187-197. PubMed ID: 28222350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel vacuolar membrane H+-ATPase c subunit gene (ThVHAc1) from Tamarix hispida confers tolerance to several abiotic stresses in Saccharomyces cerevisiae.
    Gao C; Wang Y; Jiang B; Liu G; Yu L; Wei Z; Yang C
    Mol Biol Rep; 2011 Feb; 38(2):957-63. PubMed ID: 20526814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive analysis of the stress associated protein (SAP) gene family in Tamarix hispida and the function of ThSAP6 in salt tolerance.
    Zhao X; Wang R; Zhang Y; Li Y; Yue Y; Zhou T; Wang C
    Plant Physiol Biochem; 2021 Aug; 165():1-9. PubMed ID: 34029940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tamarix hispida zinc finger protein ThZFP1 participates in salt and osmotic stress tolerance by increasing proline content and SOD and POD activities.
    Zang D; Wang C; Ji X; Wang Y
    Plant Sci; 2015 Jun; 235():111-21. PubMed ID: 25900571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vacuolar membrane H
    Wang P; Guo Y; Wang Y; Gao C
    Plant Physiol Biochem; 2020 Dec; 157():370-378. PubMed ID: 33190056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel ethylene-responsive factor from Tamarix hispida, ThERF1, is a GCC-box- and DRE-motif binding protein that negatively modulates abiotic stress tolerance in Arabidopsis.
    Wang L; Qin L; Liu W; Zhang D; Wang Y
    Physiol Plant; 2014 Sep; 152(1):84-97. PubMed ID: 24479715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ThWRKY4 from Tamarix hispida Can Form Homodimers and Heterodimers and Is Involved in Abiotic Stress Responses.
    Wang L; Zheng L; Zhang C; Wang Y; Lu M; Gao C
    Int J Mol Sci; 2015 Nov; 16(11):27097-106. PubMed ID: 26580593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants.
    Wang Y; Gao C; Liang Y; Wang C; Yang C; Liu G
    J Plant Physiol; 2010 Feb; 167(3):222-30. PubMed ID: 19853962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of TaLEA gene from Tamarix androssowii improves salt and drought tolerance in transgenic poplar (Populus simonii × P. nigra).
    Gao W; Bai S; Li Q; Gao C; Liu G; Li G; Tan F
    PLoS One; 2013; 8(6):e67462. PubMed ID: 23840708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The bZIP protein from Tamarix hispida, ThbZIP1, is ACGT elements binding factor that enhances abiotic stress signaling in transgenic Arabidopsis.
    Ji X; Liu G; Liu Y; Zheng L; Nie X; Wang Y
    BMC Plant Biol; 2013 Oct; 13():151. PubMed ID: 24093718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The transcription factor ThDOF8 binds to a novel cis-element and mediates molecular responses to salt stress in Tamarix hispida.
    Wang P; Wang D; Li Y; Li J; Liu B; Wang Y; Gao C
    J Exp Bot; 2024 May; 75(10):3171-3187. PubMed ID: 38400756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ThPOD3, a truncated polypeptide from Tamarix hispida, conferred drought tolerance in Escherichia coli.
    Guo XH; Jiang J; Wang BC; Li HY; Wang YC; Yang CP; Liu GF
    Mol Biol Rep; 2010 Mar; 37(3):1183-90. PubMed ID: 19253028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contrasting transcriptional responses of PYR1/PYL/RCAR ABA receptors to ABA or dehydration stress between maize seedling leaves and roots.
    Fan W; Zhao M; Li S; Bai X; Li J; Meng H; Mu Z
    BMC Plant Biol; 2016 Apr; 16():99. PubMed ID: 27101806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Exogenous (K
    Chen Y; Zhang S; Du S; Wang G; Zhang J; Jiang J
    Genes (Basel); 2022 Oct; 13(10):. PubMed ID: 36292689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.