BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 25133603)

  • 1. In situ chemical oxidation of contaminated groundwater by persulfate: decomposition by Fe(III)- and Mn(IV)-containing oxides and aquifer materials.
    Liu H; Bruton TA; Doyle FM; Sedlak DL
    Environ Sci Technol; 2014 Sep; 48(17):10330-6. PubMed ID: 25133603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of Benzene by Persulfate in the Presence of Fe(III)- and Mn(IV)-Containing Oxides: Stoichiometric Efficiency and Transformation Products.
    Liu H; Bruton TA; Li W; Buren JV; Prasse C; Doyle FM; Sedlak DL
    Environ Sci Technol; 2016 Jan; 50(2):890-8. PubMed ID: 26687229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms on the Impacts of Alkalinity, pH, and Chloride on Persulfate-Based Groundwater Remediation.
    Li W; Orozco R; Camargos N; Liu H
    Environ Sci Technol; 2017 Apr; 51(7):3948-3959. PubMed ID: 28263583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics and efficiency of H2O2 activation by iron-containing minerals and aquifer materials.
    Pham AL; Doyle FM; Sedlak DL
    Water Res; 2012 Dec; 46(19):6454-62. PubMed ID: 23047055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of Peroxymonosulfate by Subsurface Minerals.
    Yu M; Teel AL; Watts RJ
    J Contam Hydrol; 2016 Aug; 191():33-43. PubMed ID: 27209171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Persulfate activation by subsurface minerals.
    Ahmad M; Teel AL; Watts RJ
    J Contam Hydrol; 2010 Jun; 115(1-4):34-45. PubMed ID: 20439128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory effect of dissolved silica on H₂O₂ decomposition by iron(III) and manganese(IV) oxides: implications for H₂O₂-based in situ chemical oxidation.
    Pham AL; Doyle FM; Sedlak DL
    Environ Sci Technol; 2012 Jan; 46(2):1055-62. PubMed ID: 22129132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is it possible to remediate a BTEX contaminated chalky aquifer by in situ chemical oxidation?
    Lemaire J; Croze V; Maier J; Simonnot MO
    Chemosphere; 2011 Aug; 84(9):1181-7. PubMed ID: 21733544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow-release permanganate versus unactivated persulfate for long-term in situ chemical oxidation of 1,4-dioxane and chlorinated solvents.
    Evans PJ; Dugan P; Nguyen D; Lamar M; Crimi M
    Chemosphere; 2019 Apr; 221():802-811. PubMed ID: 30684778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics.
    Ji Y; Ferronato C; Salvador A; Yang X; Chovelon JM
    Sci Total Environ; 2014 Feb; 472():800-8. PubMed ID: 24342085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenite removal from groundwater by iron-manganese oxides filter media: Behavior and mechanism.
    Cheng Y; Zhang S; Huang T; Li Y
    Water Environ Res; 2019 Jun; 91(6):536-545. PubMed ID: 30667121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photo-induced oxidation of ceftriaxone by persulfate in the presence of iron oxides.
    Kaur B; Kuntus L; Tikker P; Kattel E; Trapido M; Dulova N
    Sci Total Environ; 2019 Aug; 676():165-175. PubMed ID: 31039536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Persulfate activation by iron oxide-immobilized MnO2 composite: identification of iron oxide and the optimum pH for degradations.
    Jo YH; Do SH; Kong SH
    Chemosphere; 2014 Jan; 95():550-5. PubMed ID: 24184048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ oxidation of petroleum-hydrocarbon contaminated groundwater using passive ISCO system.
    Liang SH; Kao CM; Kuo YC; Chen KF; Yang BM
    Water Res; 2011 Apr; 45(8):2496-506. PubMed ID: 21396673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-situ activation of persulfate by iron filings and degradation of 1,4-dioxane.
    Zhong H; Brusseau ML; Wang Y; Yan N; Quig L; Johnson GR
    Water Res; 2015 Oct; 83():104-11. PubMed ID: 26141426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Realistic expectations for the treatment of FMGP residuals by chemical oxidants.
    Shafieiyoun S; Thomson NR; Brey AP; Gasinski CM; Pence W; Marley M
    J Contam Hydrol; 2018 Dec; 219():1-17. PubMed ID: 30314848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persulfate activation during exertion of total oxidant demand.
    Teel AL; Elloy FC; Watts RJ
    Chemosphere; 2016 Sep; 158():184-92. PubMed ID: 27269993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights into persulfate decomposition by soil minerals: radical and non-radical pathways.
    Peng F; Wang X; Fang G; Gao Y; Yang X; Gao J; Wang Y; Zhou D
    Environ Sci Pollut Res Int; 2023 Apr; 30(19):55922-55931. PubMed ID: 36905549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Persulfate Oxidation of 1,2,3-Trichloropropane in Groundwater of North China Plain.
    Li H; Han Z; Qian Y; Kong X; Wang P
    Int J Environ Res Public Health; 2019 Aug; 16(15):. PubMed ID: 31374962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrolytic manipulation of persulfate reactivity by iron electrodes for trichloroethylene degradation in groundwater.
    Yuan S; Liao P; Alshawabkeh AN
    Environ Sci Technol; 2014; 48(1):656-63. PubMed ID: 24328192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.