BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 25133673)

  • 1. Tumor bioengineering using a transglutaminase crosslinked hydrogel.
    Fang JY; Tan SJ; Yang Z; Tayag C; Han B
    PLoS One; 2014; 9(8):e105616. PubMed ID: 25133673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailorable Hydrogel Improves Retention and Cardioprotection of Intramyocardial Transplanted Mesenchymal Stem Cells for the Treatment of Acute Myocardial Infarction in Mice.
    Chen Y; Li C; Li C; Chen J; Li Y; Xie H; Lin C; Fan M; Guo Y; Gao E; Yan W; Tao L
    J Am Heart Assoc; 2020 Jan; 9(2):e013784. PubMed ID: 31955638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D hydrogel-based microwell arrays as a tumor microenvironment model to study breast cancer growth.
    Casey J; Yue X; Nguyen TD; Acun A; Zellmer VR; Zhang S; Zorlutuna P
    Biomed Mater; 2017 Mar; 12(2):025009. PubMed ID: 28143999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening miRNA for Functional Significance by 3D Cell Culture System.
    Han B
    Methods Mol Biol; 2018; 1733():193-201. PubMed ID: 29435934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of human adipose-derived stem cell spheroid differentiation in an in situ enzyme-crosslinked gelatin hydrogel.
    Tsai CC; Hong YJ; Lee RJ; Cheng NC; Yu J
    J Mater Chem B; 2019 Feb; 7(7):1064-1075. PubMed ID: 32254774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening.
    Antunes J; Gaspar VM; Ferreira L; Monteiro M; Henrique R; Jerónimo C; Mano JF
    Acta Biomater; 2019 Aug; 94():392-409. PubMed ID: 31200118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput screening with nanoimprinting 3D culture for efficient drug development by mimicking the tumor environment.
    Yoshii Y; Furukawa T; Waki A; Okuyama H; Inoue M; Itoh M; Zhang MR; Wakizaka H; Sogawa C; Kiyono Y; Yoshii H; Fujibayashi Y; Saga T
    Biomaterials; 2015 May; 51():278-289. PubMed ID: 25771018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic assembly of hydrogel-based immunogenic tumor spheroids for evaluation of anticancer therapies and biomarker release.
    Sabhachandani P; Sarkar S; Mckenney S; Ravi D; Evens AM; Konry T
    J Control Release; 2019 Feb; 295():21-30. PubMed ID: 30550941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogel microenvironments for cancer spheroid growth and drug screening.
    Li Y; Kumacheva E
    Sci Adv; 2018 Apr; 4(4):eaas8998. PubMed ID: 29719868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mimicking the Endometrial Cancer Tumor Microenvironment to Reprogram Tumor-Associated Macrophages in Disintegrable Supramolecular Gelatin Hydrogel.
    Huang Y; Feng Q; Jiang H; Zhou W; Chen J; Gao J; Wang K; Wan X; Yu Y
    Int J Nanomedicine; 2020; 15():4625-4637. PubMed ID: 32636622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mini-pillar array for hydrogel-supported 3D culture and high-content histologic analysis of human tumor spheroids.
    Kang J; Lee DW; Hwang HJ; Yeon SE; Lee MY; Kuh HJ
    Lab Chip; 2016 Jun; 16(12):2265-76. PubMed ID: 27194205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid collagen alginate hydrogel as a platform for 3D tumor spheroid invasion.
    Liu C; Lewin Mejia D; Chiang B; Luker KE; Luker GD
    Acta Biomater; 2018 Jul; 75():213-225. PubMed ID: 29879553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Independently Tuning the Biochemical and Mechanical Properties of 3D Hyaluronan-Based Hydrogels with Oxime and Diels-Alder Chemistry to Culture Breast Cancer Spheroids.
    Baker AEG; Tam RY; Shoichet MS
    Biomacromolecules; 2017 Dec; 18(12):4373-4384. PubMed ID: 29040808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collagen-Laponite Nanoclay Hydrogels for Tumor Spheroid Growth.
    Alamán-Díez P; Borau C; Guerrero PE; Amaveda H; Mora M; Fraile JM; García-Gareta E; García-Aznar JM; Pérez MÁ
    Biomacromolecules; 2023 Jun; 24(6):2879-2891. PubMed ID: 37249509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional culture and clinical drug responses of a highly metastatic human ovarian cancer HO-8910PM cells in nanofibrous microenvironments of three hydrogel biomaterials.
    Song H; Cai GH; Liang J; Ao DS; Wang H; Yang ZH
    J Nanobiotechnology; 2020 Jun; 18(1):90. PubMed ID: 32527266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinstructive microparticles for self-assembly of mesenchymal stem Cell-3D tumor spheroids.
    Ferreira LP; Gaspar VM; Mano JF
    Biomaterials; 2018 Dec; 185():155-173. PubMed ID: 30245385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-Culture of Tumor Spheroids and Fibroblasts in a Collagen Matrix-Incorporated Microfluidic Chip Mimics Reciprocal Activation in Solid Tumor Microenvironment.
    Jeong SY; Lee JH; Shin Y; Chung S; Kuh HJ
    PLoS One; 2016; 11(7):e0159013. PubMed ID: 27391808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatically crosslinked gelatin-laminin hydrogels for applications in neuromuscular tissue engineering.
    Besser RR; Bowles AC; Alassaf A; Carbonero D; Claure I; Jones E; Reda J; Wubker L; Batchelor W; Ziebarth N; Silvera R; Khan A; Maciel R; Saporta M; Agarwal A
    Biomater Sci; 2020 Jan; 8(2):591-606. PubMed ID: 31859298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishment and Analysis of a 3D Co-Culture Spheroid Model of Pancreatic Adenocarcinoma for Application in Drug Discovery.
    Meier-Hubberten JC; Sanderson MP
    Methods Mol Biol; 2019; 1953():163-179. PubMed ID: 30912022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Vitro 3D Models of Tunable Stiffness.
    Filipe EC; Parker AL; Cadell AL; Major G; Croucher DR; Cox TR
    Methods Mol Biol; 2021; 2294():27-42. PubMed ID: 33742392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.