These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 25133684)

  • 41. Effects of surface modification of PLGA-PEG-PLGA nanoparticles on loperamide delivery efficiency across the blood-brain barrier.
    Chen YC; Hsieh WY; Lee WF; Zeng DT
    J Biomater Appl; 2013 Mar; 27(7):909-22. PubMed ID: 22207601
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development and characterization of hyaluronic acid-anchored PLGA nanoparticulate carriers of doxorubicin.
    Yadav AK; Mishra P; Mishra AK; Mishra P; Jain S; Agrawal GP
    Nanomedicine; 2007 Dec; 3(4):246-57. PubMed ID: 18068091
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Y-shaped mPEG-PLA cabazitaxel conjugates: well-controlled synthesis by organocatalytic approach and self-assembly into interface drug-loaded core-corona nanoparticles.
    Bensaid F; Thillaye du Boullay O; Amgoune A; Pradel C; Harivardhan Reddy L; Didier E; Sablé S; Louit G; Bazile D; Bourissou D
    Biomacromolecules; 2013 Apr; 14(4):1189-98. PubMed ID: 23432356
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The heat-chill method for preparation of self-assembled amphiphilic poly(ε-caprolactone)-poly(ethylene glycol) block copolymer based micellar nanoparticles for drug delivery.
    Payyappilly SS; Dhara S; Chattopadhyay S
    Soft Matter; 2014 Apr; 10(13):2150-9. PubMed ID: 24651872
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A mPEG-PLGA-b-PLL copolymer carrier for adriamycin and siRNA delivery.
    Liu P; Yu H; Sun Y; Zhu M; Duan Y
    Biomaterials; 2012 Jun; 33(17):4403-12. PubMed ID: 22436800
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S; Poulin S; Hildgen P
    J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Small angle neutron scattering studies on the internal structure of poly(lactide-co-glycolide)-block-poly(ethylene glycol) nanoparticles as drug delivery vehicles.
    Yang B; Lowe JP; Schweins R; Edler KJ
    Biomacromolecules; 2015 Feb; 16(2):457-64. PubMed ID: 25539145
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fabrication of size-controlled polyimide nanoparticles.
    Suzuki M; Kasai H; Ishizaka T; Miura H; Okada S; Oikawa H; Nihira T; Fukuro H; Nakanishi H
    J Nanosci Nanotechnol; 2007 Aug; 7(8):2748-52. PubMed ID: 17685292
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Watching the gorilla and questioning delivery dogma.
    Anchordoquy TJ; Simberg D
    J Control Release; 2017 Sep; 262():87-90. PubMed ID: 28713040
    [No Abstract]   [Full Text] [Related]  

  • 50. Multilayered film microreactors fabricated by a one-step thermal bonding technique with high reproducibility and their applications.
    Min KI; Kim JO; Kim H; Im DJ; Kim DP
    Lab Chip; 2016 Mar; 16(6):977-83. PubMed ID: 26886679
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels.
    Rhee M; Valencia PM; Rodriguez MI; Langer R; Farokhzad OC; Karnik R
    Adv Mater; 2011 Mar; 23(12):H79-83. PubMed ID: 21433105
    [No Abstract]   [Full Text] [Related]  

  • 52. Polyimide-based magnetic microactuators for biofouling removal.
    Qi Yang ; Tran Nguyen ; Chunan Liu ; Miller J; Rhoads JF; Linnes J; Hyowon Lee
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5757-5760. PubMed ID: 28269562
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that "slip" through the human mucus barrier.
    Wang YY; Lai SK; Suk JS; Pace A; Cone R; Hanes J
    Angew Chem Int Ed Engl; 2008; 47(50):9726-9. PubMed ID: 18979480
    [No Abstract]   [Full Text] [Related]  

  • 54. Microarchitecture for a three-dimensional wrinkled surface platform.
    Li M; Hakimi N; Perez R; Waldman S; Kozinski JA; Hwang DK
    Adv Mater; 2015 Mar; 27(11):1880-6. PubMed ID: 25652175
    [No Abstract]   [Full Text] [Related]  

  • 55. Surface properties: Immune attack on nanoparticles.
    Sim RB; Wallis R
    Nat Nanotechnol; 2011 Feb; 6(2):80-1. PubMed ID: 21293484
    [No Abstract]   [Full Text] [Related]  

  • 56. Micro-masonry: construction of 3D structures by microscale self-assembly.
    Fernandez JG; Khademhosseini A
    Adv Mater; 2010 Jun; 22(23):2538-41. PubMed ID: 20440697
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ligand affinity: multivalency counterbalances PEGylation.
    Park K
    J Control Release; 2014 Nov; 194():351. PubMed ID: 25443093
    [No Abstract]   [Full Text] [Related]  

  • 58. Toward the scale-up production of polymeric nanotherapeutics for cancer clinical trials.
    Mahmud MM; Pandey N; Winkles JA; Woodworth GF; Kim AJ
    Nano Today; 2024 Jun; 56():. PubMed ID: 38854931
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 3D-printed microfluidic device for high-throughput production of lipid nanoparticles incorporating SARS-CoV-2 spike protein mRNA.
    Lin WS; Bostic WKV; Malmstadt N
    Lab Chip; 2024 Jan; 24(2):162-170. PubMed ID: 38165143
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Advanced manufacturing of nanoparticle formulations of drugs and biologics using microfluidics.
    Shen Y; Gwak H; Han B
    Analyst; 2024 Jan; 149(3):614-637. PubMed ID: 38083968
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.