These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 25133703)

  • 1. Nanoparticle surface characterization and clustering through concentration-dependent surface adsorption modeling.
    Chen R; Zhang Y; Sahneh FD; Scoglio CM; Wohlleben W; Haase A; Monteiro-Riviere NA; Riviere JE
    ACS Nano; 2014 Sep; 8(9):9446-56. PubMed ID: 25133703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological Surface Adsorption Index of Nanomaterials: Modelling Surface Interactions of Nanomaterials with Biomolecules.
    Chen R; Riviere JE
    Adv Exp Med Biol; 2017; 947():207-253. PubMed ID: 28168670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of nanoparticle pesticide adsorption: computational approaches based on experimental data.
    Chen R; Zhang Y; Monteiro-Riviere NA; Riviere JE
    Nanotoxicology; 2016 Oct; 10(8):1118-28. PubMed ID: 27074998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the surface adsorption forces of nanomaterials in biological systems.
    Xia XR; Monteiro-Riviere NA; Mathur S; Song X; Xiao L; Oldenberg SJ; Fadeel B; Riviere JE
    ACS Nano; 2011 Nov; 5(11):9074-81. PubMed ID: 21999618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental implications of nanoparticle aging in the processing and fate of copper-based nanomaterials.
    Mudunkotuwa IA; Pettibone JM; Grassian VH
    Environ Sci Technol; 2012 Jul; 46(13):7001-10. PubMed ID: 22280489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How do proteins unfold upon adsorption on nanoparticle surfaces?
    Pan H; Qin M; Meng W; Cao Y; Wang W
    Langmuir; 2012 Sep; 28(35):12779-87. PubMed ID: 22913793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATR-FTIR spectroscopy as a tool to probe surface adsorption on nanoparticles at the liquid-solid interface in environmentally and biologically relevant media.
    Mudunkotuwa IA; Minshid AA; Grassian VH
    Analyst; 2014 Mar; 139(5):870-81. PubMed ID: 24350328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake.
    Walkey CD; Olsen JB; Guo H; Emili A; Chan WC
    J Am Chem Soc; 2012 Feb; 134(4):2139-47. PubMed ID: 22191645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle characterization for cancer nanotechnology and other biological applications.
    Brown SC; Palazuelos M; Sharma P; Powers KW; Roberts SM; Grobmyer SR; Moudgil BM
    Methods Mol Biol; 2010; 624():39-65. PubMed ID: 20217588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological and environmental surface interactions of nanomaterials: characterization, modeling, and prediction.
    Chen R; Riviere JE
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 May; 9(3):. PubMed ID: 27863136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fate and risks of nanomaterials in aquatic and terrestrial environments.
    Batley GE; Kirby JK; McLaughlin MJ
    Acc Chem Res; 2013 Mar; 46(3):854-62. PubMed ID: 22759090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing the physical-chemical properties of carbon nanotubes (CNT) and graphene nanoplatelets (GNP) on Cu(II) adsorption.
    Rosenzweig S; Sorial GA; Sahle-Demessie E; McAvoy DC
    J Hazard Mater; 2014 Aug; 279():410-7. PubMed ID: 25103452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of ZnII porphyrin with TiO2 nanoparticles: from mechanism to synthesis of hybrid nanomaterials.
    Spadavecchia J; Méthivier C; Landoulsi J; Pradier CM
    Chemphyschem; 2013 Aug; 14(11):2462-9. PubMed ID: 23821481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency.
    Lesniak A; Salvati A; Santos-Martinez MJ; Radomski MW; Dawson KA; Åberg C
    J Am Chem Soc; 2013 Jan; 135(4):1438-44. PubMed ID: 23301582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of heterogeneously charged nanoparticles on a variably charged surface by the extended surface complexation approach: charge regulation, chemical heterogeneity, and surface complexation.
    Saito T; Koopal LK; Nagasaki S; Tanaka S
    J Phys Chem B; 2008 Feb; 112(5):1339-49. PubMed ID: 18189380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of acid and polymer coated nanoparticles: a statistical thermodynamics approach.
    Nap RJ; Park Y; Wong JY; Szleifer I
    Langmuir; 2013 Nov; 29(47):14482-93. PubMed ID: 24143965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of superparamagnetic iron oxide nanoparticles on silica and calcium carbonate sand.
    Park YC; Paulsen J; Nap RJ; Whitaker RD; Mathiyazhagan V; Song YQ; Hürlimann M; Szleifer I; Wong JY
    Langmuir; 2014 Jan; 30(3):784-92. PubMed ID: 24393031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption.
    Patwardhan SV; Emami FS; Berry RJ; Jones SE; Naik RR; Deschaume O; Heinz H; Perry CC
    J Am Chem Soc; 2012 Apr; 134(14):6244-56. PubMed ID: 22435500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic characterization of engineered nanomaterial-protein interactions in relation to surface reactivity.
    Sund J; Alenius H; Vippola M; Savolainen K; Puustinen A
    ACS Nano; 2011 Jun; 5(6):4300-9. PubMed ID: 21528863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of lipid liquid crystalline nanoparticles on cationic, hydrophilic, and hydrophobic surfaces.
    Chang DP; Jankunec M; Barauskas J; Tiberg F; Nylander T
    ACS Appl Mater Interfaces; 2012 May; 4(5):2643-51. PubMed ID: 22515950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.