These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 25133803)

  • 1. The integrated disease network.
    Sun K; Buchan N; Larminie C; Pržulj N
    Integr Biol (Camb); 2014 Nov; 6(11):1069-79. PubMed ID: 25133803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting disease associations via biological network analysis.
    Sun K; Gonçalves JP; Larminie C; Przulj N
    BMC Bioinformatics; 2014 Sep; 15(1):304. PubMed ID: 25228247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational studies on Alzheimer's disease associated pathways and regulatory patterns using microarray gene expression and network data: revealed association with aging and other diseases.
    Panigrahi PP; Singh TR
    J Theor Biol; 2013 Oct; 334():109-21. PubMed ID: 23811083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translating genome wide association study results to associations among common diseases: in silico study with an electronic medical record.
    Anand V; Rosenman MB; Downs SM
    Int J Med Inform; 2013 Sep; 82(9):864-74. PubMed ID: 23743324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mining emerging biomedical literature for understanding disease associations in drug discovery.
    Rajpal DK; Qu XA; Freudenberg JM; Kumar VD
    Methods Mol Biol; 2014; 1159():171-206. PubMed ID: 24788268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network.
    Li Y; Patra JC
    Bioinformatics; 2010 May; 26(9):1219-24. PubMed ID: 20215462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compensating for literature annotation bias when predicting novel drug-disease relationships through Medical Subject Heading Over-representation Profile (MeSHOP) similarity.
    Cheung WA; Ouellette BF; Wasserman WW
    BMC Med Genomics; 2013; 6 Suppl 2(Suppl 2):S3. PubMed ID: 23819887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-way association extraction and visualization from biological text documents using hyper-graphs: applications to genetic association studies for diseases.
    Mukhopadhyay S; Palakal M; Maddu K
    Artif Intell Med; 2010 Jul; 49(3):145-54. PubMed ID: 20382004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A disease similarity matrix based on the uniqueness of shared genes.
    Carson MB; Liu C; Lu Y; Jia C; Lu H
    BMC Med Genomics; 2017 May; 10(Suppl 1):26. PubMed ID: 28589854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The research on gene-disease association based on text-mining of PubMed.
    Zhou J; Fu BQ
    BMC Bioinformatics; 2018 Feb; 19(1):37. PubMed ID: 29415654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A relation based measure of semantic similarity for Gene Ontology annotations.
    Sheehan B; Quigley A; Gaudin B; Dobson S
    BMC Bioinformatics; 2008 Nov; 9():468. PubMed ID: 18983678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.
    Zhang SW; Shao DD; Zhang SY; Wang YB
    Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finding genome-transcriptome-phenome association with structured association mapping and visualization in GenAMap.
    Curtis RE; Yin J; Kinnaird P; Xing EP
    Pac Symp Biocomput; 2012; ():327-38. PubMed ID: 22174288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A PubMed-wide associational study of infectious diseases.
    Sintchenko V; Anthony S; Phan XH; Lin F; Coiera EW
    PLoS One; 2010 Mar; 5(3):e9535. PubMed ID: 20224767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond the data deluge: data integration and bio-ontologies.
    Blake JA; Bult CJ
    J Biomed Inform; 2006 Jun; 39(3):314-20. PubMed ID: 16564748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linking PharmGKB to phenotype studies and animal models of disease for drug repurposing.
    Hoehndorf R; Oellrich A; Rebholz-Schuhmann D; Schofield PN; Gkoutos GV
    Pac Symp Biocomput; 2012; ():388-99. PubMed ID: 22174294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovering implicit associations between genes and hereditary diseases.
    Seki K; Mostafa J
    Pac Symp Biocomput; 2007; ():316-27. PubMed ID: 17990502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semantic data integration and knowledge management to represent biological network associations.
    Losko S; Heumann K
    Methods Mol Biol; 2009; 563():241-58. PubMed ID: 19597789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene expression analysis in clear cell renal cell carcinoma using gene set enrichment analysis for biostatistical management.
    Maruschke M; Reuter D; Koczan D; Hakenberg OW; Thiesen HJ
    BJU Int; 2011 Jul; 108(2 Pt 2):E29-35. PubMed ID: 21435154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated bio-entity network: a system for biological knowledge discovery.
    Bell L; Chowdhary R; Liu JS; Niu X; Zhang J
    PLoS One; 2011; 6(6):e21474. PubMed ID: 21738677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.