These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 25133818)
1. Phylogeny in defining model plants for lignocellulosic ethanol production: a comparative study of Brachypodium distachyon, wheat, maize, and Miscanthus x giganteus leaf and stem biomass. Meineke T; Manisseri C; Voigt CA PLoS One; 2014; 9(8):e103580. PubMed ID: 25133818 [TBL] [Abstract][Full Text] [Related]
2. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus. da Costa RM; Lee SJ; Allison GG; Hazen SP; Winters A; Bosch M Ann Bot; 2014 Oct; 114(6):1265-77. PubMed ID: 24737720 [TBL] [Abstract][Full Text] [Related]
3. Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon. Trabucco GM; Matos DA; Lee SJ; Saathoff AJ; Priest HD; Mockler TC; Sarath G; Hazen SP BMC Biotechnol; 2013 Jul; 13():61. PubMed ID: 23902793 [TBL] [Abstract][Full Text] [Related]
4. Glucanocellulosic ethanol: the undiscovered biofuel potential in energy crops and marine biomass. Falter C; Zwikowics C; Eggert D; Blümke A; Naumann M; Wolff K; Ellinger D; Reimer R; Voigt CA Sci Rep; 2015 Sep; 5():13722. PubMed ID: 26324382 [TBL] [Abstract][Full Text] [Related]
5. A cell wall reference profile for Miscanthus bioenergy crops highlights compositional and structural variations associated with development and organ origin. da Costa RM; Pattathil S; Avci U; Lee SJ; Hazen SP; Winters A; Hahn MG; Bosch M New Phytol; 2017 Mar; 213(4):1710-1725. PubMed ID: 27859277 [TBL] [Abstract][Full Text] [Related]
6. Range of cell-wall alterations enhance saccharification in Brachypodium distachyon mutants. Marriott PE; Sibout R; Lapierre C; Fangel JU; Willats WG; Hofte H; Gómez LD; McQueen-Mason SJ Proc Natl Acad Sci U S A; 2014 Oct; 111(40):14601-6. PubMed ID: 25246540 [TBL] [Abstract][Full Text] [Related]
7. Engineering grass biomass for sustainable and enhanced bioethanol production. Mohapatra S; Mishra SS; Bhalla P; Thatoi H Planta; 2019 Aug; 250(2):395-412. PubMed ID: 31236698 [TBL] [Abstract][Full Text] [Related]
8. Effects of fertilizer application and dry/wet processing of Miscanthus x giganteus on bioethanol production. Boakye-Boaten NA; Xiu S; Shahbazi A; Wang L; Li R; Mims M; Schimmel K Bioresour Technol; 2016 Mar; 204():98-105. PubMed ID: 26773953 [TBL] [Abstract][Full Text] [Related]
9. Functional testing of a PF02458 homologue of putative rice arabinoxylan feruloyl transferase genes in Brachypodium distachyon. Buanafina MM; Fescemyer HW; Sharma M; Shearer EA Planta; 2016 Mar; 243(3):659-74. PubMed ID: 26612070 [TBL] [Abstract][Full Text] [Related]
10. Maize and sorghum: genetic resources for bioenergy grasses. Carpita NC; McCann MC Trends Plant Sci; 2008 Aug; 13(8):415-20. PubMed ID: 18650120 [TBL] [Abstract][Full Text] [Related]
11. Identification of lignin-deficient Brachypodium distachyon (L.) Beauv. mutants induced by gamma radiation. Lee MB; Kim JY; Seo YW J Sci Food Agric; 2017 May; 97(7):2159-2165. PubMed ID: 27604502 [TBL] [Abstract][Full Text] [Related]
12. Miscanthus as cellulosic biomass for bioethanol production. Lee WC; Kuan WC Biotechnol J; 2015 Jun; 10(6):840-54. PubMed ID: 26013948 [TBL] [Abstract][Full Text] [Related]
13. Bergs M; Völkering G; Kraska T; Pude R; Do XT; Kusch P; Monakhova Y; Konow C; Schulze M Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30857288 [TBL] [Abstract][Full Text] [Related]
14. Comparing the performance of Miscanthus x giganteus and wheat straw biomass in sulfuric acid based pretreatment. Kärcher MA; Iqbal Y; Lewandowski I; Senn T Bioresour Technol; 2015 Mar; 180():360-4. PubMed ID: 25613555 [TBL] [Abstract][Full Text] [Related]
15. Overexpression of GA20-OXIDASE1 impacts plant height, biomass allocation and saccharification efficiency in maize. Voorend W; Nelissen H; Vanholme R; De Vliegher A; Van Breusegem F; Boerjan W; Roldán-Ruiz I; Muylle H; Inzé D Plant Biotechnol J; 2016 Mar; 14(3):997-1007. PubMed ID: 26903034 [TBL] [Abstract][Full Text] [Related]
16. Altered lignin biosynthesis improves cellulosic bioethanol production in transgenic maize plants down-regulated for cinnamyl alcohol dehydrogenase. Fornalé S; Capellades M; Encina A; Wang K; Irar S; Lapierre C; Ruel K; Joseleau JP; Berenguer J; Puigdomènech P; Rigau J; Caparrós-Ruiz D Mol Plant; 2012 Jul; 5(4):817-30. PubMed ID: 22147756 [TBL] [Abstract][Full Text] [Related]
17. Assessment of bermudagrass and bunch grasses as feedstock for conversion to ethanol. Anderson WF; Dien BS; Brandon SK; Peterson JD Appl Biochem Biotechnol; 2008 Mar; 145(1-3):13-21. PubMed ID: 18425607 [TBL] [Abstract][Full Text] [Related]
18. Distinct and Overlapping Functions of Golfier P; Ermakova O; Unda F; Murphy EK; Xie J; He F; Zhang W; Lohmann JU; Mansfield SD; Rausch T; Wolf S Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830276 [TBL] [Abstract][Full Text] [Related]
19. Methyl jasmonate and salicylic acid are able to modify cell wall but only salicylic acid alters biomass digestibility in the model grass Brachypodium distachyon. Napoleão TA; Soares G; Vital CE; Bastos C; Castro R; Loureiro ME; Giordano A Plant Sci; 2017 Oct; 263():46-54. PubMed ID: 28818383 [TBL] [Abstract][Full Text] [Related]
20. Modified expression of ZmMYB167 in Brachypodium distachyon and Zea mays leads to increased cell wall lignin and phenolic content. Bhatia R; Dalton S; Roberts LA; Moron-Garcia OM; Iacono R; Kosik O; Gallagher JA; Bosch M Sci Rep; 2019 Jun; 9(1):8800. PubMed ID: 31217516 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]