These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25133875)

  • 41. Twin thickness-dependent tensile deformation mechanism on strengthening-softening of Si nanowires.
    Yimer MM; Wubeshet DA; Qin X
    Heliyon; 2023 May; 9(5):e16039. PubMed ID: 37215880
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Blocking effect of twin boundaries on partial dislocation emission from void surfaces.
    Zhang L; Zhou H; Qu S
    Nanoscale Res Lett; 2012 Mar; 7(1):164. PubMed ID: 22385908
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Twin Boundaries merely as Intrinsically Kinematic Barriers for Screw Dislocation Motion in FCC Metals.
    Zhang J; Zhang H; Ye H; Zheng Y
    Sci Rep; 2016 Mar; 6():22893. PubMed ID: 26961273
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tensile Properties of <111>-Oriented Nanotwinned Cu with Different Columnar Grain Structures.
    Li YJ; Tu KN; Chen C
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32183126
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Near-ideal strength in gold nanowires achieved through microstructural design.
    Deng C; Sansoz F
    ACS Nano; 2009 Oct; 3(10):3001-8. PubMed ID: 19743833
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Peierls stress of dislocations in molecular crystal cyclotrimethylene trinitramine.
    Mathew N; Picu CR; Chung PW
    J Phys Chem A; 2013 Jun; 117(25):5326-34. PubMed ID: 23734970
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Probing the limits of metal plasticity with molecular dynamics simulations.
    Zepeda-Ruiz LA; Stukowski A; Oppelstrup T; Bulatov VV
    Nature; 2017 Oct; 550(7677):492-495. PubMed ID: 28953878
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of Grain Size and Twin Layer Thickness on Crack Initiation at Twin Boundaries.
    Zhou P; Zhou J; Zhu Y; Jiang E; Wang Z
    J Nanosci Nanotechnol; 2018 Apr; 18(4):2903-2909. PubMed ID: 29442972
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Superstrength through Nanotwinning.
    An Q; Goddard WA; Xie KY; Sim GD; Hemker KJ; Munhollon T; Toksoy MF; Haber RA
    Nano Lett; 2016 Dec; 16(12):7573-7579. PubMed ID: 27960511
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Superior Strength and Multiple Strengthening Mechanisms in Nanocrystalline TWIP Steel.
    Kim JG; Enikeev NA; Seol JB; Abramova MM; Karavaeva MV; Valiev RZ; Park CG; Kim HS
    Sci Rep; 2018 Jul; 8(1):11200. PubMed ID: 30046047
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Supersonic Screw Dislocations Gliding at the Shear Wave Speed.
    Peng S; Wei Y; Jin Z; Yang W
    Phys Rev Lett; 2019 Feb; 122(4):045501. PubMed ID: 30768288
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanical properties of ceria nanorods and nanochains; the effect of dislocations, grain-boundaries and oriented attachment.
    Sayle TX; Inkson BJ; Karakoti A; Kumar A; Molinari M; Möbus G; Parker SC; Seal S; Sayle DC
    Nanoscale; 2011 Apr; 3(4):1823-37. PubMed ID: 21409243
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Removal of stacking-fault tetrahedra by twin boundaries in nanotwinned metals.
    Yu KY; Bufford D; Sun C; Liu Y; Wang H; Kirk MA; Li M; Zhang X
    Nat Commun; 2013; 4():1377. PubMed ID: 23340417
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dislocation-twin boundary interactions induced nanocrystalline via SPD processing in bulk metals.
    Zhang F; Feng X; Yang Z; Kang J; Wang T
    Sci Rep; 2015 Mar; 5():8981. PubMed ID: 25757550
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In situ atomic scale mechanisms of strain-induced twin boundary shear to high angle grain boundary in nanocrystalline Pt.
    Wang L; Teng J; Wu Y; Sha X; Xiang S; Mao S; Yu G; Zhang Z; Zou J; Han X
    Ultramicroscopy; 2018 Dec; 195():69-73. PubMed ID: 30195095
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Observing Dislocations Transported by Twin Boundaries in Al Thin Film: Unusual Pathways for Dislocation-Twin Boundary Interactions.
    Kou Z; Feng T; Lan S; Tang S; Yang L; Yang Y; Wilde G
    Nano Lett; 2022 Aug; 22(15):6229-6234. PubMed ID: 35876496
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Atomic shuffling dominated mechanism for deformation twinning in magnesium.
    Li B; Ma E
    Phys Rev Lett; 2009 Jul; 103(3):035503. PubMed ID: 19659295
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation.
    Yamakov V; Wolf D; Phillpot SR; Mukherjee AK; Gleiter H
    Nat Mater; 2004 Jan; 3(1):43-7. PubMed ID: 14704784
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Detwinning Mechanism for Nanotwinned Cubic Boron Nitride with Unprecedented Strength: A First-Principles Study.
    Yang B; Peng X; Sun S; Huang C; Yin D; Chen X; Fu T
    Nanomaterials (Basel); 2019 Aug; 9(8):. PubMed ID: 31382585
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Extra strengthening and work hardening in gradient nanotwinned metals.
    Cheng Z; Zhou H; Lu Q; Gao H; Lu L
    Science; 2018 Nov; 362(6414):. PubMed ID: 30385547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.