These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 25133980)
1. Advanced thermopower wave in novel ZnO nanostructures/fuel composite. Lee KY; Hwang H; Choi W ACS Appl Mater Interfaces; 2014 Sep; 6(17):15575-82. PubMed ID: 25133980 [TBL] [Abstract][Full Text] [Related]
2. Effects of chemical fuel composition on energy generation from thermopower waves. Yeo T; Hwang H; Jeong DC; Lee KY; Hong J; Song C; Choi W Nanotechnology; 2014 Nov; 25(44):445403. PubMed ID: 25319506 [TBL] [Abstract][Full Text] [Related]
3. Phase Transformations of Cobalt Oxides in CoxOy-ZnO Multipod Nanostructures via Combustion from Thermopower Waves. Lee KY; Hwang H; Choi W Small; 2015 Sep; 11(36):4762-73. PubMed ID: 26136292 [TBL] [Abstract][Full Text] [Related]
4. Investigation of the effect of the structure of large-area carbon nanotube/fuel composites on energy generation from thermopower waves. Hwang H; Yeo T; Um JE; Lee KY; Kim HS; Han JH; Kim WJ; Choi W Nanoscale Res Lett; 2014; 9(1):536. PubMed ID: 25285059 [TBL] [Abstract][Full Text] [Related]
5. Voltage amplification of thermopower waves via current crowding at high resistances in self-propagating combustion waves. Yeo T; Hwang H; Cho Y; Shin D; Choi W Nanotechnology; 2015 Jul; 26(30):305402. PubMed ID: 26159116 [TBL] [Abstract][Full Text] [Related]
6. Manipulation of combustion waves in carbon-nanotube/fuel composites by highly reactive Mg nanoparticles. Lee KY; Hwang H; Shin D; Choi W Nanoscale; 2015 Oct; 7(40):17071-8. PubMed ID: 26419765 [TBL] [Abstract][Full Text] [Related]
7. Preparation and Evaluation of Hybrid Composites of Chemical Fuel and Multi-walled Carbon Nanotubes in the Study of Thermopower Waves. Hwang H; Yeo T; Cho Y; Shin D; Choi W J Vis Exp; 2015 Apr; (98):. PubMed ID: 25938793 [TBL] [Abstract][Full Text] [Related]
8. ZnO based thermopower wave sources. Walia S; Weber R; Balendhran S; Yao D; Abrahamson JT; Zhuiykov S; Bhaskaran M; Sriram S; Strano MS; Kalantar-zadeh K Chem Commun (Camb); 2012 Aug; 48(60):7462-4. PubMed ID: 22728449 [TBL] [Abstract][Full Text] [Related]
10. Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers. Willander M; Nur O; Zhao QX; Yang LL; Lorenz M; Cao BQ; Zúñiga Pérez J; Czekalla C; Zimmermann G; Grundmann M; Bakin A; Behrends A; Al-Suleiman M; El-Shaer A; Che Mofor A; Postels B; Waag A; Boukos N; Travlos A; Kwack HS; Guinard J; Le Si Dang D Nanotechnology; 2009 Aug; 20(33):332001. PubMed ID: 19636090 [TBL] [Abstract][Full Text] [Related]
11. Giant Peak Voltage of Thermopower Waves Driven by the Chemical Potential Gradient of Single-Crystalline Bi Singh S; Mun H; Lee S; Kim SW; Baik S Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28640460 [TBL] [Abstract][Full Text] [Related]
12. Fuel mediated solution combustion synthesis of ZnO supported gold clusters and nanoparticles and their catalytic activity and in vitro cytotoxicity. Chanu TI; Muthukumar T; Manoharan PT Phys Chem Chem Phys; 2014 Nov; 16(43):23686-98. PubMed ID: 25271812 [TBL] [Abstract][Full Text] [Related]
13. Aggregation of zinc oxide nanoparticles: from non-aqueous dispersions to composites used as photoactive layers in hybrid solar cells. Rhodes R; Horie M; Chen H; Wang Z; Turner ML; Saunders BR J Colloid Interface Sci; 2010 Apr; 344(2):261-71. PubMed ID: 20138291 [TBL] [Abstract][Full Text] [Related]
14. Self-assembled, aligned ZnO nanorod buffer layers for high-current-density, inverted organic photovoltaics. Rao AD; Karalatti S; Thomas T; Ramamurthy PC ACS Appl Mater Interfaces; 2014 Oct; 6(19):16792-9. PubMed ID: 25238197 [TBL] [Abstract][Full Text] [Related]
15. Excess thermopower and the theory of thermopower waves. Abrahamson JT; Sempere B; Walsh MP; Forman JM; Sen F; Sen S; Mahajan SG; Paulus GL; Wang QH; Choi W; Strano MS ACS Nano; 2013 Aug; 7(8):6533-44. PubMed ID: 23889080 [TBL] [Abstract][Full Text] [Related]
16. Wavefront velocity oscillations of carbon-nanotube-guided thermopower waves: nanoscale alternating current sources. Abrahamson JT; Choi W; Schonenbach NS; Park J; Han JH; Walsh MP; Kalantar-Zadeh K; Strano MS ACS Nano; 2011 Jan; 5(1):367-75. PubMed ID: 21182252 [TBL] [Abstract][Full Text] [Related]
17. Straight and thin ZnO nanorods: hectogram-scale synthesis at low temperature and cathodoluminescence. Zhang H; Yang D; Ma X; Du N; Wu J; Que D J Phys Chem B; 2006 Jan; 110(2):827-30. PubMed ID: 16471610 [TBL] [Abstract][Full Text] [Related]
18. Thermoelectric-pyroelectric hybrid energy generation from thermopower waves in core-shell structured carbon nanotube-PZT nanocomposites. Yeo T; Hwang H; Shin D; Seo B; Choi W Nanotechnology; 2017 Feb; 28(6):065403. PubMed ID: 28052049 [TBL] [Abstract][Full Text] [Related]
19. ZnO nanorods/Au hybrid nanocomposites for glucose biosensor. Wei Y; Li Y; Liu X; Xian Y; Shi G; Jin L Biosens Bioelectron; 2010 Sep; 26(1):275-8. PubMed ID: 20598519 [TBL] [Abstract][Full Text] [Related]
20. Nanotip fabrication of zinc oxide nanorods and their enhanced field emission properties. Yao IC; Lin P; Tseng TY Nanotechnology; 2009 Mar; 20(12):125202. PubMed ID: 19420460 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]