These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 25134007)

  • 1. Efficient electrocatalytic oxygen evolution on amorphous nickel-cobalt binary oxide nanoporous layers.
    Yang Y; Fei H; Ruan G; Xiang C; Tour JM
    ACS Nano; 2014 Sep; 8(9):9518-23. PubMed ID: 25134007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon-Free Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions.
    Yang Y; Fei H; Ruan G; Li L; Wang G; Kim ND; Tour JM
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20607-11. PubMed ID: 26320368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution.
    Trotochaud L; Ranney JK; Williams KN; Boettcher SW
    J Am Chem Soc; 2012 Oct; 134(41):17253-61. PubMed ID: 22991896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ grown, self-supported iron-cobalt-nickel alloy amorphous oxide nanosheets with low overpotential toward water oxidation.
    Fan J; Chen Z; Shi H; Zhao G
    Chem Commun (Camb); 2016 Mar; 52(23):4290-3. PubMed ID: 26962573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Situ Electrochemically Derived Nanoporous Oxides from Transition Metal Dichalcogenides for Active Oxygen Evolution Catalysts.
    Chen W; Liu Y; Li Y; Sun J; Qiu Y; Liu C; Zhou G; Cui Y
    Nano Lett; 2016 Dec; 16(12):7588-7596. PubMed ID: 27960466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrathin Amorphous Iron-Nickel Boride Nanosheets for Highly Efficient Electrocatalytic Oxygen Production.
    Nsanzimana JMV; Reddu V; Peng Y; Huang Z; Wang C; Wang X
    Chemistry; 2018 Dec; 24(69):18502-18511. PubMed ID: 29797380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel.
    Smith RD; Prévot MS; Fagan RD; Trudel S; Berlinguette CP
    J Am Chem Soc; 2013 Aug; 135(31):11580-6. PubMed ID: 23883103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrathin Amorphous Nickel Doped Cobalt Phosphates with Highly Ordered Mesoporous Structures as Efficient Electrocatalyst for Oxygen Evolution Reaction.
    Yang L; Ren H; Liang Q; Dinh KN; Dangol R; Yan Q
    Small; 2020 Feb; 16(7):e1906766. PubMed ID: 31985171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrocatalytic oxygen evolution over supported small amorphous Ni-Fe nanoparticles in alkaline electrolyte.
    Qiu Y; Xin L; Li W
    Langmuir; 2014 Jul; 30(26):7893-901. PubMed ID: 24914708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Supported 3 D Ultrathin Cobalt-Nickel-Boron Nanoflakes as an Efficient Electrocatalyst for the Oxygen Evolution Reaction.
    Yuan H; Wei S; Tang B; Ma Z; Li J; Kundu M; Wang X
    ChemSusChem; 2020 Jul; 13(14):3662-3670. PubMed ID: 32329249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron-Induced Activation of Ordered Mesoporous Nickel Cobalt Oxide Electrocatalyst for the Oxygen Evolution Reaction.
    Deng X; Öztürk S; Weidenthaler C; Tüysüz H
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21225-21233. PubMed ID: 28582615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemically Deposited Amorphous Cobalt-Nickel-Doped Copper Oxide as an Efficient Electrocatalyst toward Water Oxidation Reaction.
    Asghar MA; Ali A; Haider A; Zaheer M; Nisar T; Wagner V; Akhter Z
    ACS Omega; 2021 Aug; 6(30):19419-19426. PubMed ID: 34368529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrodeposited-hydroxide surface-covered porous nickel-cobalt alloy electrodes for efficient oxygen evolution reaction.
    Vishnu Prataap RK; Mohan S
    Chem Commun (Camb); 2017 Mar; 53(23):3365-3368. PubMed ID: 28261728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-Dimensional and In Situ-Activated Spinel Oxide Nanoporous Clusters Derived from Stainless Steel for Efficient and Durable Water Oxidation.
    Cai M; Liu W; Luo X; Chen C; Pan R; Zhang H; Zhong M
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):13971-13981. PubMed ID: 32115941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amorphous mixed-metal hydroxide nanostructures for advanced water oxidation catalysts.
    Gao YQ; Liu XY; Yang GW
    Nanoscale; 2016 Mar; 8(9):5015-23. PubMed ID: 26864279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of Nanoporous Metals, Oxides, Carbides, and Sulfides: Beyond Nanocasting.
    Luc W; Jiao F
    Acc Chem Res; 2016 Jul; 49(7):1351-8. PubMed ID: 27294847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation.
    Tang D; Liu J; Wu X; Liu R; Han X; Han Y; Huang H; Liu Y; Kang Z
    ACS Appl Mater Interfaces; 2014 May; 6(10):7918-25. PubMed ID: 24735390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser-Ablation-Produced Cobalt Nickel Phosphate with High-Valence Nickel Ions as an Active Catalyst for the Oxygen Evolution Reaction.
    Sun X; Wang J; Yin Y; Wang H; Li S; Liu H; Mao J; Du X
    Chemistry; 2020 Mar; 26(13):2793-2797. PubMed ID: 31840329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong-Coupled Cobalt Borate Nanosheets/Graphene Hybrid as Electrocatalyst for Water Oxidation Under Both Alkaline and Neutral Conditions.
    Chen P; Xu K; Zhou T; Tong Y; Wu J; Cheng H; Lu X; Ding H; Wu C; Xie Y
    Angew Chem Int Ed Engl; 2016 Feb; 55(7):2488-92. PubMed ID: 26757358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concentrated-acid triggered superfast generation of porous amorphous cobalt oxide toward efficient water oxidation catalysis in alkaline solution.
    Ji X; He Y; Liu J
    Chem Commun (Camb); 2019 Feb; 55(12):1797-1800. PubMed ID: 30667425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.