BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25134491)

  • 1. In situ SERS detection of emulsifiers at lipid interfaces using label-free amphiphilic gold nanoparticles.
    Li Y; Driver M; Winuprasith T; Zheng J; McClements DJ; He L
    Analyst; 2014 Oct; 139(20):5075-8. PubMed ID: 25134491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A SERS Study on the Assembly Behavior of Gold Nanoparticles at the Oil/Water Interface.
    Wang M; Zhang Z; He J
    Langmuir; 2015 Dec; 31(47):12911-9. PubMed ID: 26556584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic studies of conformational changes of β-lactoglobulin adsorbed on gold nanoparticle surfaces.
    Winuprasith T; Suphantharika M; McClements DJ; He L
    J Colloid Interface Sci; 2014 Feb; 416():184-9. PubMed ID: 24370420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous substrates for label-free molecular level detection of nonresonant organic molecules.
    Ko H; Chang S; Tsukruk VV
    ACS Nano; 2009 Jan; 3(1):181-8. PubMed ID: 19206265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative label-free and real-time surface-enhanced Raman scattering monitoring of reaction kinetics using self-assembled bifunctional nanoparticle arrays.
    Zhang K; Zhao J; Ji J; Li Y; Liu B
    Anal Chem; 2015 Sep; 87(17):8702-8. PubMed ID: 26267841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free SERS monitoring of chemical reactions catalyzed by small gold nanoparticles using 3D plasmonic superstructures.
    Xie W; Walkenfort B; Schlücker S
    J Am Chem Soc; 2013 Feb; 135(5):1657-60. PubMed ID: 23186150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural Deposition Strategy for Interfacial, Self-Assembled, Large-Scale, Densely Packed, Monolayer Film with Ligand-Exchanged Gold Nanorods for In Situ Surface-Enhanced Raman Scattering Drug Detection.
    Mao M; Zhou B; Tang X; Chen C; Ge M; Li P; Huang X; Yang L; Liu J
    Chemistry; 2018 Mar; 24(16):4094-4102. PubMed ID: 29327504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-pot green synthesis of graphene oxide/gold nanocomposites as SERS substrates for malachite green detection.
    Fu WL; Zhen SJ; Huang CZ
    Analyst; 2013 May; 138(10):3075-81. PubMed ID: 23586069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trace analysis of mercury(II) ions using aptamer-modified Au/Ag core-shell nanoparticles and SERS spectroscopy in a microdroplet channel.
    Chung E; Gao R; Ko J; Choi N; Lim DW; Lee EK; Chang SI; Choo J
    Lab Chip; 2013 Jan; 13(2):260-6. PubMed ID: 23208150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial self-assembled functional nanoparticle array: a facile surface-enhanced Raman scattering sensor for specific detection of trace analytes.
    Zhang K; Ji J; Li Y; Liu B
    Anal Chem; 2014 Jul; 86(13):6660-5. PubMed ID: 24915488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A gold@silica core-shell nanoparticle-based surface-enhanced Raman scattering biosensor for label-free glucose detection.
    Al-Ogaidi I; Gou H; Al-Kazaz AK; Aguilar ZP; Melconian AK; Zheng P; Wu N
    Anal Chim Acta; 2014 Feb; 811():76-80. PubMed ID: 24456597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of an anti-aggregated SERS sensing platform for metal ion detection based on bovine serum albumin-mediated metal nanoparticles.
    Ji W; Chen L; Xue X; Guo Z; Yu Z; Zhao B; Ozaki Y
    Chem Commun (Camb); 2013 Aug; 49(66):7334-6. PubMed ID: 23851712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extremely sensitive sandwich assay of kanamycin using surface-enhanced Raman scattering of 2-mercaptobenzothiazole labeled gold@silver nanoparticles.
    Zengin A; Tamer U; Caykara T
    Anal Chim Acta; 2014 Mar; 817():33-41. PubMed ID: 24594815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Titration of gold nanoparticles in phase extraction.
    Cheng HW; Schadt MJ; Zhong CJ
    Analyst; 2015 Dec; 140(23):8023-32. PubMed ID: 26523548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-imprinted core-shell Au nanoparticles for selective detection of bisphenol A based on surface-enhanced Raman scattering.
    Xue JQ; Li DW; Qu LL; Long YT
    Anal Chim Acta; 2013 May; 777():57-62. PubMed ID: 23622965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining 3-D plasmonic gold nanorod arrays with colloidal nanoparticles as a versatile concept for reliable, sensitive, and selective molecular detection by SERS.
    Yilmaz M; Senlik E; Biskin E; Yavuz MS; Tamer U; Demirel G
    Phys Chem Chem Phys; 2014 Mar; 16(12):5563-70. PubMed ID: 24514029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chiral ionic liquid monolayer-stabilized gold nanoparticles: synthesis, self-assembly, and application to SERS.
    Bai X; Li X; Zheng L
    Langmuir; 2010 Jul; 26(14):12209-14. PubMed ID: 20499920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles.
    Tong L; Zhu T; Liu Z
    Chem Soc Rev; 2011 Mar; 40(3):1296-304. PubMed ID: 21125088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-Enhanced Raman Spectroscopy on Liquid Interfacial Nanoparticle Arrays for Multiplex Detecting Drugs in Urine.
    Ma Y; Liu H; Mao M; Meng J; Yang L; Liu J
    Anal Chem; 2016 Aug; 88(16):8145-51. PubMed ID: 27401135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning gold nanoparticles interfaces by specific peptide interaction for surface enhanced Raman spectroscopy (SERS) and separation applications.
    Manikas AC; Causa F; Della Moglie R; Netti PA
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7915-22. PubMed ID: 23862632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.