These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 25134491)
1. In situ SERS detection of emulsifiers at lipid interfaces using label-free amphiphilic gold nanoparticles. Li Y; Driver M; Winuprasith T; Zheng J; McClements DJ; He L Analyst; 2014 Oct; 139(20):5075-8. PubMed ID: 25134491 [TBL] [Abstract][Full Text] [Related]
2. A SERS Study on the Assembly Behavior of Gold Nanoparticles at the Oil/Water Interface. Wang M; Zhang Z; He J Langmuir; 2015 Dec; 31(47):12911-9. PubMed ID: 26556584 [TBL] [Abstract][Full Text] [Related]
3. Spectroscopic studies of conformational changes of β-lactoglobulin adsorbed on gold nanoparticle surfaces. Winuprasith T; Suphantharika M; McClements DJ; He L J Colloid Interface Sci; 2014 Feb; 416():184-9. PubMed ID: 24370420 [TBL] [Abstract][Full Text] [Related]
4. Porous substrates for label-free molecular level detection of nonresonant organic molecules. Ko H; Chang S; Tsukruk VV ACS Nano; 2009 Jan; 3(1):181-8. PubMed ID: 19206265 [TBL] [Abstract][Full Text] [Related]
5. Quantitative label-free and real-time surface-enhanced Raman scattering monitoring of reaction kinetics using self-assembled bifunctional nanoparticle arrays. Zhang K; Zhao J; Ji J; Li Y; Liu B Anal Chem; 2015 Sep; 87(17):8702-8. PubMed ID: 26267841 [TBL] [Abstract][Full Text] [Related]
6. Label-free SERS monitoring of chemical reactions catalyzed by small gold nanoparticles using 3D plasmonic superstructures. Xie W; Walkenfort B; Schlücker S J Am Chem Soc; 2013 Feb; 135(5):1657-60. PubMed ID: 23186150 [TBL] [Abstract][Full Text] [Related]
7. Natural Deposition Strategy for Interfacial, Self-Assembled, Large-Scale, Densely Packed, Monolayer Film with Ligand-Exchanged Gold Nanorods for In Situ Surface-Enhanced Raman Scattering Drug Detection. Mao M; Zhou B; Tang X; Chen C; Ge M; Li P; Huang X; Yang L; Liu J Chemistry; 2018 Mar; 24(16):4094-4102. PubMed ID: 29327504 [TBL] [Abstract][Full Text] [Related]
8. One-pot green synthesis of graphene oxide/gold nanocomposites as SERS substrates for malachite green detection. Fu WL; Zhen SJ; Huang CZ Analyst; 2013 May; 138(10):3075-81. PubMed ID: 23586069 [TBL] [Abstract][Full Text] [Related]
9. Trace analysis of mercury(II) ions using aptamer-modified Au/Ag core-shell nanoparticles and SERS spectroscopy in a microdroplet channel. Chung E; Gao R; Ko J; Choi N; Lim DW; Lee EK; Chang SI; Choo J Lab Chip; 2013 Jan; 13(2):260-6. PubMed ID: 23208150 [TBL] [Abstract][Full Text] [Related]
10. Interfacial self-assembled functional nanoparticle array: a facile surface-enhanced Raman scattering sensor for specific detection of trace analytes. Zhang K; Ji J; Li Y; Liu B Anal Chem; 2014 Jul; 86(13):6660-5. PubMed ID: 24915488 [TBL] [Abstract][Full Text] [Related]
12. Design of an anti-aggregated SERS sensing platform for metal ion detection based on bovine serum albumin-mediated metal nanoparticles. Ji W; Chen L; Xue X; Guo Z; Yu Z; Zhao B; Ozaki Y Chem Commun (Camb); 2013 Aug; 49(66):7334-6. PubMed ID: 23851712 [TBL] [Abstract][Full Text] [Related]
13. Extremely sensitive sandwich assay of kanamycin using surface-enhanced Raman scattering of 2-mercaptobenzothiazole labeled gold@silver nanoparticles. Zengin A; Tamer U; Caykara T Anal Chim Acta; 2014 Mar; 817():33-41. PubMed ID: 24594815 [TBL] [Abstract][Full Text] [Related]
14. Titration of gold nanoparticles in phase extraction. Cheng HW; Schadt MJ; Zhong CJ Analyst; 2015 Dec; 140(23):8023-32. PubMed ID: 26523548 [TBL] [Abstract][Full Text] [Related]
15. Surface-imprinted core-shell Au nanoparticles for selective detection of bisphenol A based on surface-enhanced Raman scattering. Xue JQ; Li DW; Qu LL; Long YT Anal Chim Acta; 2013 May; 777():57-62. PubMed ID: 23622965 [TBL] [Abstract][Full Text] [Related]
16. Combining 3-D plasmonic gold nanorod arrays with colloidal nanoparticles as a versatile concept for reliable, sensitive, and selective molecular detection by SERS. Yilmaz M; Senlik E; Biskin E; Yavuz MS; Tamer U; Demirel G Phys Chem Chem Phys; 2014 Mar; 16(12):5563-70. PubMed ID: 24514029 [TBL] [Abstract][Full Text] [Related]
17. Chiral ionic liquid monolayer-stabilized gold nanoparticles: synthesis, self-assembly, and application to SERS. Bai X; Li X; Zheng L Langmuir; 2010 Jul; 26(14):12209-14. PubMed ID: 20499920 [TBL] [Abstract][Full Text] [Related]
18. Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles. Tong L; Zhu T; Liu Z Chem Soc Rev; 2011 Mar; 40(3):1296-304. PubMed ID: 21125088 [TBL] [Abstract][Full Text] [Related]
19. Surface-Enhanced Raman Spectroscopy on Liquid Interfacial Nanoparticle Arrays for Multiplex Detecting Drugs in Urine. Ma Y; Liu H; Mao M; Meng J; Yang L; Liu J Anal Chem; 2016 Aug; 88(16):8145-51. PubMed ID: 27401135 [TBL] [Abstract][Full Text] [Related]
20. Tuning gold nanoparticles interfaces by specific peptide interaction for surface enhanced Raman spectroscopy (SERS) and separation applications. Manikas AC; Causa F; Della Moglie R; Netti PA ACS Appl Mater Interfaces; 2013 Aug; 5(16):7915-22. PubMed ID: 23862632 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]