These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 25134559)

  • 1. An improved classical mapping method for homogeneous electron gases at finite temperature.
    Liu Y; Wu J
    J Chem Phys; 2014 Aug; 141(6):064115. PubMed ID: 25134559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A bridge-functional-based classical mapping method for predicting the correlation functions of uniform electron gases at finite temperature.
    Liu Y; Wu J
    J Chem Phys; 2014 Feb; 140(8):084103. PubMed ID: 24588144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and thermodynamic properties of relativistic electron gases.
    Liu Y; Wu J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012141. PubMed ID: 25122285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate homogeneous electron gas exchange-correlation free energy for local spin-density calculations.
    Karasiev VV; Sjostrom T; Dufty J; Trickey SB
    Phys Rev Lett; 2014 Feb; 112(7):076403. PubMed ID: 24579621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple classical mapping of the spin-polarized quantum electron gas: distribution functions and local-field corrections.
    Dharma-Wardana MW; Perrot F
    Phys Rev Lett; 2000 Jan; 84(5):959-62. PubMed ID: 11017415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A classical-map simulation of two-dimensional electron fluid: an extension of classical-map hypernetted-chain theory beyond the hypernetted-chain approximation.
    Totsuji C; Miyake T; Nakanishi K; Tsuruta K; Totsuji H
    J Phys Condens Matter; 2009 Jan; 21(4):045502. PubMed ID: 21715808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite-temperature electronic simulations without the Born-Oppenheimer constraint.
    Mazzola G; Zen A; Sorella S
    J Chem Phys; 2012 Oct; 137(13):134112. PubMed ID: 23039590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the full configuration interaction quantum Monte Carlo method using homogeneous electron gas models.
    Shepherd JJ; Booth GH; Alavi A
    J Chem Phys; 2012 Jun; 136(24):244101. PubMed ID: 22755559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite-temperature magnetism in bcc Fe under compression.
    Sha X; Cohen RE
    J Phys Condens Matter; 2010 Sep; 22(37):372201. PubMed ID: 21403188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unified description of linear screening in dense plasmas.
    Stanton LG; Murillo MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033104. PubMed ID: 25871221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uniform electron gas at finite temperature by fermionic-path-integral Monte Carlo simulations.
    Filinov VS; Larkin AS; Levashov PR
    Phys Rev E; 2020 Sep; 102(3-1):033203. PubMed ID: 33075865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exchange and correlation effects on density excitation spectra of metallic quantum wires at finite temperature.
    Bala R; Moudgil RK; Srivastava S; Pathak KN
    J Phys Condens Matter; 2012 Jun; 24(24):245302. PubMed ID: 22609497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Path-integral Monte Carlo simulation of the warm dense homogeneous electron gas.
    Brown EW; Clark BK; DuBois JL; Ceperley DM
    Phys Rev Lett; 2013 Apr; 110(14):146405. PubMed ID: 25167016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcorrelated calculations of homogeneous electron gases.
    Luo H
    J Chem Phys; 2012 Jun; 136(22):224111. PubMed ID: 22713040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate determination of the Gibbs energy of Cu-Zr melts using the thermodynamic integration method in Monte Carlo simulations.
    Harvey JP; Gheribi AE; Chartrand P
    J Chem Phys; 2011 Aug; 135(8):084502. PubMed ID: 21895194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2D electron gas at arbitrary spin polarizations and coupling strengths: exchange-correlation energies, distribution functions, and spin-polarized phases.
    Perrot F; Dharma-wardana MW
    Phys Rev Lett; 2001 Nov; 87(20):206404. PubMed ID: 11690497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum locality and equilibrium properties in low-temperature parahydrogen: a multiscale simulation study.
    Potestio R; Delle Site L
    J Chem Phys; 2012 Feb; 136(5):054101. PubMed ID: 22320719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pair correlation functions and the self-diffusion coefficient of Lennard-Jones liquid in the modified free volume theory of diffusion.
    Laghaei R; Eskandari Nasrabad A; Eu BC
    J Phys Chem B; 2005 Nov; 109(45):21375-9. PubMed ID: 16853773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generalizing the self-healing diffusion Monte Carlo approach to finite temperature: a path for the optimization of low-energy many-body bases.
    Reboredo FA; Kim J
    J Chem Phys; 2014 Feb; 140(7):074103. PubMed ID: 24559334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent developments in quantum Monte Carlo simulations with applications for cold gases.
    Pollet L
    Rep Prog Phys; 2012 Sep; 75(9):094501. PubMed ID: 22885729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.