BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 25134572)

  • 1. Electronic and optical properties of pure and modified diamondoids studied by many-body perturbation theory and time-dependent density functional theory.
    Demján T; Vörös M; Palummo M; Gali A
    J Chem Phys; 2014 Aug; 141(6):064308. PubMed ID: 25134572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasiparticle electronic structure and optical absorption of diamond nanoparticles from ab initio many-body perturbation theory.
    Yin H; Ma Y; Hao X; Mu J; Liu C; Yi Z
    J Chem Phys; 2014 Jun; 140(21):214315. PubMed ID: 24908016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron emission from diamondoids: a diffusion quantum Monte Carlo study.
    Drummond ND; Williamson AJ; Needs RJ; Galli G
    Phys Rev Lett; 2005 Aug; 95(9):096801. PubMed ID: 16197235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab Initio Optoelectronic Properties of Silicon Nanoparticles: Excitation Energies, Sum Rules, and Tamm-Dancoff Approximation.
    Rocca D; Vörös M; Gali A; Galli G
    J Chem Theory Comput; 2014 Aug; 10(8):3290-8. PubMed ID: 26588298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quasiparticle band structures and optical properties of magnesium fluoride.
    Yi Z; Jia R
    J Phys Condens Matter; 2012 Feb; 24(8):085602. PubMed ID: 22277330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Band Gaps and Optical Spectra of Chlorographene, Fluorographene and Graphane from G0W0, GW0 and GW Calculations on Top of PBE and HSE06 Orbitals.
    Karlický F; Otyepka M
    J Chem Theory Comput; 2013 Sep; 9(9):4155-64. PubMed ID: 26592406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bis-μ-oxo and μ-η2:η2-peroxo dicopper complexes studied within (time-dependent) density-functional and many-body perturbation theory.
    Rohrmüller M; Herres-Pawlis S; Witte M; Schmidt WG
    J Comput Chem; 2013 May; 34(12):1035-45. PubMed ID: 23299568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The stability, electronic structure, and optical absorption of boron-nitride diamondoids predicted with first-principles calculations.
    Gao W; Hung L; Ogut S; Chelikowsky JR
    Phys Chem Chem Phys; 2018 Jul; 20(28):19188-19194. PubMed ID: 29978876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The GW-Method for Quantum Chemistry Applications: Theory and Implementation.
    van Setten MJ; Weigend F; Evers F
    J Chem Theory Comput; 2013 Jan; 9(1):232-46. PubMed ID: 26589026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and electronic properties of ZrX2)and HfX2 (X=S and Se) from first principles calculations.
    Jiang H
    J Chem Phys; 2011 May; 134(20):204705. PubMed ID: 21639465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defect formation energies without the band-gap problem: combining density-functional theory and the GW approach for the silicon self-interstitial.
    Rinke P; Janotti A; Scheffler M; Van de Walle CG
    Phys Rev Lett; 2009 Jan; 102(2):026402. PubMed ID: 19257298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. G0W0 band structure of CdWO4.
    Laasner R
    J Phys Condens Matter; 2014 Mar; 26(12):125503. PubMed ID: 24599225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic Properties of Realistic Anatase TiO
    Morales-García Á; Valero R; Illas F
    J Chem Theory Comput; 2019 Sep; 15(9):5024-5030. PubMed ID: 31369257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GW quasiparticle bandgaps of anatase TiO2 starting from DFT + U.
    Patrick CE; Giustino F
    J Phys Condens Matter; 2012 May; 24(20):202201. PubMed ID: 22510587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of the G
    Morales-García Á; Valero R; Illas F
    J Chem Theory Comput; 2017 Aug; 13(8):3746-3753. PubMed ID: 28641004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geometrical and optical benchmarking of copper guanidine-quinoline complexes: insights from TD-DFT and many-body perturbation theory.
    Jesser A; Rohrmüller M; Schmidt WG; Herres-Pawlis S
    J Comput Chem; 2014 Jan; 35(1):1-17. PubMed ID: 24122864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing GW Approaches for Predicting Core Level Binding Energies.
    van Setten MJ; Costa R; Viñes F; Illas F
    J Chem Theory Comput; 2018 Feb; 14(2):877-883. PubMed ID: 29320628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic excitations of bulk LiCl from many-body perturbation theory.
    Jiang YF; Wang NP; Rohlfing M
    J Chem Phys; 2013 Dec; 139(21):214710. PubMed ID: 24320397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum nuclear dynamics in the photophysics of diamondoids.
    Patrick CE; Giustino F
    Nat Commun; 2013; 4():2006. PubMed ID: 23756460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.