These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25134598)

  • 1. Rotational Brownian dynamics simulations of clathrin cage formation.
    Ilie IM; den Otter WK; Briels WJ
    J Chem Phys; 2014 Aug; 141(6):065101. PubMed ID: 25134598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembly of three-legged patchy particles into polyhedral cages.
    den Otter WK; Renes MR; Briels WJ
    J Phys Condens Matter; 2010 Mar; 22(10):104103. PubMed ID: 21389437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An elementary singularity-free Rotational Brownian Dynamics algorithm for anisotropic particles.
    Ilie IM; Briels WJ; den Otter WK
    J Chem Phys; 2015 Mar; 142(11):114103. PubMed ID: 25796227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetry as the key to clathrin cage assembly.
    den Otter WK; Renes MR; Briels WJ
    Biophys J; 2010 Aug; 99(4):1231-8. PubMed ID: 20713007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheology and simulation of 2-dimensional clathrin protein network assembly.
    VanDersarl JJ; Mehraeen S; Schoen AP; Heilshorn SC; Spakowitz AJ; Melosh NA
    Soft Matter; 2014 Sep; 10(33):6219-27. PubMed ID: 25012232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clathrin Assembly Regulated by Adaptor Proteins in Coarse-Grained Models.
    Giani M; den Otter WK; Briels WJ
    Biophys J; 2016 Jul; 111(1):222-35. PubMed ID: 27410749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brownian Dynamics, Molecular Dynamics, and Monte Carlo modeling of colloidal systems.
    Chen JC; Kim AS
    Adv Colloid Interface Sci; 2004 Dec; 112(1-3):159-73. PubMed ID: 15581559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brownian aggregation rate of colloid particles with several active sites.
    Nekrasov VM; Polshchitsin AA; Yurkin MA; Yakovleva GE; Maltsev VP; Chernyshev AV
    J Chem Phys; 2014 Aug; 141(6):064309. PubMed ID: 25134573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental system for one-dimensional rotational brownian motion.
    McNaughton BH; Kinnunen P; Shlomi M; Cionca C; Pei SN; Clarke R; Argyrakis P; Kopelman R
    J Phys Chem B; 2011 May; 115(18):5212-8. PubMed ID: 21500841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiscale simulations of anisotropic particles combining molecular dynamics and Green's function reaction dynamics.
    Vijaykumar A; Ouldridge TE; Ten Wolde PR; Bolhuis PG
    J Chem Phys; 2017 Mar; 146(11):114106. PubMed ID: 28330367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brownian Dynamics Simulations of Ferromagnetic Colloidal Dispersions in a Simple Shear Flow.
    Satoh A; Chantrell RW; Coverdale GN
    J Colloid Interface Sci; 1999 Jan; 209(1):44-59. PubMed ID: 9878135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Avoiding unphysical kinetic traps in Monte Carlo simulations of strongly attractive particles.
    Whitelam S; Geissler PL
    J Chem Phys; 2007 Oct; 127(15):154101. PubMed ID: 17949126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamic study of flexibility in immunoglobulin IgG1 using Brownian dynamics and the Monte Carlo simulations of a simple model.
    Díaz FG; Iniesta A; García de la Torre J
    Biopolymers; 1990; 30(5-6):547-54. PubMed ID: 2265227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Monte Carlo versus Brownian dynamics: A comparison for self-diffusion and crystallization in colloidal fluids.
    Sanz E; Marenduzzo D
    J Chem Phys; 2010 May; 132(19):194102. PubMed ID: 20499946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studying protein assembly with reversible Brownian dynamics of patchy particles.
    Klein HC; Schwarz US
    J Chem Phys; 2014 May; 140(18):184112. PubMed ID: 24832258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collective translational and rotational Monte Carlo cluster move for general pairwise interaction.
    Růžička Š; Allen MP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033302. PubMed ID: 25314559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Proteins' Rotational Diffusion Coefficients from Simulations of Their Free Brownian Motion in Volume-Occupied Environments.
    Długosz M; Antosiewicz JM
    J Chem Theory Comput; 2014 Jan; 10(1):481-91. PubMed ID: 26579925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the Self-Assembly of Protein Complexes through a Rigid-Body Rotational Reaction-Diffusion Algorithm.
    Johnson ME
    J Phys Chem B; 2018 Dec; 122(49):11771-11783. PubMed ID: 30256109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and rheology of colloidal particle gels: insight from computer simulation.
    Dickinson E
    Adv Colloid Interface Sci; 2013 Nov; 199-200():114-27. PubMed ID: 23916723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unbiased rotational moves for rigid-body dynamics.
    Beard DA; Schlick T
    Biophys J; 2003 Nov; 85(5):2973-6. PubMed ID: 14581199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.