These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 25134599)

  • 1. The role of non-equilibrium fluxes in the relaxation processes of the linear chemical master equation.
    de Oliveira LR; Bazzani A; Giampieri E; Castellani GC
    J Chem Phys; 2014 Aug; 141(6):065102. PubMed ID: 25134599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissipation, generalized free energy, and a self-consistent nonequilibrium thermodynamics of chemically driven open subsystems.
    Ge H; Qian H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062125. PubMed ID: 23848645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bistability in the chemical master equation for dual phosphorylation cycles.
    Bazzani A; Castellani GC; Giampieri E; Remondini D; Cooper LN
    J Chem Phys; 2012 Jun; 136(23):235102. PubMed ID: 22779621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stoichiometric network analysis of entropy production in chemical reactions.
    Hochberg D; Ribó JM
    Phys Chem Chem Phys; 2018 Sep; 20(36):23726-23739. PubMed ID: 30198047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation energy hypothesis: open chemical systems and their biological functions.
    Qian H
    Annu Rev Phys Chem; 2007; 58():113-42. PubMed ID: 17059360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stochastic thermodynamics and entropy production of chemical reaction systems.
    Tomé T; de Oliveira MJ
    J Chem Phys; 2018 Jun; 148(22):224104. PubMed ID: 29907050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between thermodynamic driving force and one-way fluxes in reversible processes.
    Beard DA; Qian H
    PLoS One; 2007 Jan; 2(1):e144. PubMed ID: 17206279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical origins of entropy production, free energy dissipation, and their mathematical representations.
    Ge H; Qian H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051133. PubMed ID: 20866211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium.
    Qian H; Beard DA
    Biophys Chem; 2005 Apr; 114(2-3):213-20. PubMed ID: 15829355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws.
    Polettini M; Esposito M
    J Chem Phys; 2014 Jul; 141(2):024117. PubMed ID: 25028009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy Consumption and Entropy Production in a Stochastic Formulation of BCM Learning.
    Castellani G; Cooper LN; De Oliveira LR; Blais BS
    J Comput Biol; 2021 Mar; 28(3):257-268. PubMed ID: 33370157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonequilibrium steady-state circulation and heat dissipation functional.
    Qian H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 1):022101. PubMed ID: 11497631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The energy pump and the origin of the non-equilibrium flux of the dynamical systems and the networks.
    Xu L; Shi H; Feng H; Wang J
    J Chem Phys; 2012 Apr; 136(16):165102. PubMed ID: 22559506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steepest entropy ascent model for far-nonequilibrium thermodynamics: unified implementation of the maximum entropy production principle.
    Beretta GP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042113. PubMed ID: 25375444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic thermodynamics, fluctuation theorems and molecular machines.
    Seifert U
    Rep Prog Phys; 2012 Dec; 75(12):126001. PubMed ID: 23168354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential and flux field landscape theory. I. Global stability and dynamics of spatially dependent non-equilibrium systems.
    Wu W; Wang J
    J Chem Phys; 2013 Sep; 139(12):121920. PubMed ID: 24089732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion approximations to the chemical master equation only have a consistent stochastic thermodynamics at chemical equilibrium.
    Horowitz JM
    J Chem Phys; 2015 Jul; 143(4):044111. PubMed ID: 26233111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures.
    Liu Y; Panesi M; Sahai A; Vinokur M
    J Chem Phys; 2015 Apr; 142(13):134109. PubMed ID: 25854230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions.
    Grima R
    J Chem Phys; 2010 Jul; 133(3):035101. PubMed ID: 20649359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Equilibrium states of open quantum systems in the strong coupling regime.
    Subaşı Y; Fleming CH; Taylor JM; Hu BL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061132. PubMed ID: 23367918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.