BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 25134606)

  • 1. Interfacial load transfer in polymer/carbon nanotube nanocomposites with a nanohybrid shish kebab modification.
    Nie M; Kalyon DM; Fisher FT
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):14886-93. PubMed ID: 25134606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer single crystal-decorated superhydrophobic buckypaper with controlled wetting and conductivity.
    Laird ED; Wang W; Cheng S; Li B; Presser V; Dyatkin B; Gogotsi Y; Li CY
    ACS Nano; 2012 Feb; 6(2):1204-13. PubMed ID: 22243213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanocellulose-PE-b-PEG copolymer nanohybrid shish-kebab structure via interfacial crystallization.
    Ochoa M; Collazos N; Le T; Subramaniam R; Sanders M; Singh RP; Depan D
    Carbohydr Polym; 2017 Mar; 159():116-124. PubMed ID: 28038740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymer decoration on carbon nanotubes via physical vapor deposition.
    Li L; Li B; Yang G; Li CY
    Langmuir; 2007 Jul; 23(16):8522-5. PubMed ID: 17602575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superior reinforcement in melt-spun polyethylene/multiwalled carbon nanotube fiber through formation of a shish-kebab structure.
    Mai F; Wang K; Yao M; Deng H; Chen F; Fu Q
    J Phys Chem B; 2010 Aug; 114(33):10693-702. PubMed ID: 20677770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical modelling and simulation of nanohybrid shish-kebab architecture of PE-b-PEG copolymers and carbon nanotubes.
    Le T; Collazos N; Simoneaux A; Murru S; Depan D; Subramaniam R
    Phys Chem Chem Phys; 2017 May; 19(20):13348-13360. PubMed ID: 28492681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of stretching on the mechanical properties in melt-spun poly(butylene succinate)/microfibrillated cellulose (MFC) nanocomposites.
    Zhou M; Fan M; Zhao Y; Jin T; Fu Q
    Carbohydr Polym; 2016 Apr; 140():383-92. PubMed ID: 26876865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controllability of Polymer Crystal Orientation Using Heterogeneous Nucleation of Deformed Polymer Loops Grafted on Two-Dimensional Nanofiller.
    Nie Y; Gu Z; Zhou Q; Wei Y; Hao T; Liu Y; Liu R; Zhou Z
    J Phys Chem B; 2017 Jul; 121(27):6685-6690. PubMed ID: 28628317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison study of morphology and crystallization behavior of polyethylene and poly(ethylene oxide) on single-walled carbon nanotubes.
    Zheng X; Xu Q
    J Phys Chem B; 2010 Jul; 114(29):9435-44. PubMed ID: 20593889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer crystallization-driven, periodic patterning on carbon nanotubes.
    Li L; Li CY; Ni C
    J Am Chem Soc; 2006 Feb; 128(5):1692-9. PubMed ID: 16448143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct measurements of the mechanical strength of carbon nanotube-poly(methyl methacrylate) interfaces.
    Chen X; Zheng M; Park C; Ke C
    Small; 2013 Oct; 9(19):3345-51. PubMed ID: 23606544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanotube epoxy nanocomposites: the effects of interfacial modifications on the dynamic mechanical properties of the nanocomposites.
    Yoonessi M; Lebrón-Colón M; Scheiman D; Meador MA
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16621-30. PubMed ID: 25215892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale Heat Conduction in CNT-POLYMER Nanocomposites at Fast Thermal Perturbations.
    Minakov AA; Schick C
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31370312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocomposites of carbon nanotube fibers prepared by polymer crystallization.
    Zhang S; Lin W; Wong CP; Bucknall DG; Kumar S
    ACS Appl Mater Interfaces; 2010 Jun; 2(6):1642-7. PubMed ID: 20507070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy dissipation due to interfacial slip in nanocomposites reinforced with aligned carbon nanotubes.
    Gardea F; Glaz B; Riddick J; Lagoudas DC; Naraghi M
    ACS Appl Mater Interfaces; 2015 May; 7(18):9725-35. PubMed ID: 25905718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manufacturing polymer/carbon nanotube composite using a novel direct process.
    Tran CD; Lucas S; Phillips DG; Randeniya LK; Baughman RH; Tran-Cong T
    Nanotechnology; 2011 Apr; 22(14):145302. PubMed ID: 21346301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical assembly of carbon nanotubes-liquid crystal nanocomposite.
    Kundu S; Batabyal SK; Nayek P; Roy SK
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1735-40. PubMed ID: 18572572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in situ Raman spectroscopy study of stress transfer between carbon nanotubes and polymer.
    Mu M; Osswald S; Gogotsi Y; Winey KI
    Nanotechnology; 2009 Aug; 20(33):335703. PubMed ID: 19636105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the role of oriented nucleus in polymer shish-kebab crystal growth via phase-field method.
    Wang X; Ouyang J; Su J; Zhou W
    J Chem Phys; 2014 Mar; 140(11):114102. PubMed ID: 24655167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reinforcing polymer composites with epoxide-grafted carbon nanotubes.
    Wang S; Liang R; Wang B; Zhang C
    Nanotechnology; 2008 Feb; 19(8):085710. PubMed ID: 21730741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.